Many-body localization occurs in isolated quantum systems when Anderson localization persists in the presence of finite interactions. Despite strong evidence for the existence of a many-body localization transition, a reliable extraction of the critical disorder strength is difficult due to a large drift with system size in the studied quantities. In this Letter, we explore two entanglement properties that are promising for the study of the many-body localization transition: the variance of the half-chain entanglement entropy of exact eigenstates and the long time change in entanglement after a local quench from an exact eigenstate. We investigate these quantities in a disordered quantum Ising chain and use them to estimate the critical disorder strength and its energy dependence. In addition, we analyze a spin-glass transition at large disorder strength and provide evidence for it being a separate transition. We, thereby, give numerical support for a recently proposed phase diagram of many-body localization with localization protected quantum order [Huse et al., Phys. Rev. B 88, 014206 (2013)].
«
Many-body localization occurs in isolated quantum systems when Anderson localization persists in the presence of finite interactions. Despite strong evidence for the existence of a many-body localization transition, a reliable extraction of the critical disorder strength is difficult due to a large drift with system size in the studied quantities. In this Letter, we explore two entanglement properties that are promising for the study of the many-body localization transition: the variance of the...
»