We consider a cluster Poisson model with heavy-tailed interarrival times and cluster sizes as a generalization of an infinite source Poisson model where the file sizes have a regularly varying tail distribution function or a finite second moment. One result is that this model reflects long range dependence of teletraffic data. We show that depending on the heaviness of the file sizes, the interarrival times and the cluster sizes we have to distinguish different growths rates for the time scale of the cumulative traffic. The mean corrected cumulative input process converges to a fractional Brownian motion in the fast growth case. However, in the intermediate and the slow growth case we can have convergence to a stable Lévy motion or a fractional Brownian motion as well depending on the heaviness of the underlying
distributions. These results are contrary to the idea that cumulative broadband network traffic converges in the slow growth case to a stable process. Furthermore, we derive the
asymptotic behavior of the cluster Poisson point process which models the arrival times of data packets and the individual input process itself.
«
We consider a cluster Poisson model with heavy-tailed interarrival times and cluster sizes as a generalization of an infinite source Poisson model where the file sizes have a regularly varying tail distribution function or a finite second moment. One result is that this model reflects long range dependence of teletraffic data. We show that depending on the heaviness of the file sizes, the interarrival times and the cluster sizes we have to distinguish different growths rates for the time scale o...
»