The venerable phenomena of Anderson localization, along with the much more recent many-body localization, both depend crucially on the presence of disorder. The latter enters either in the form of quenched disorder in the parameters of the Hamiltonian, or through a special choice of a disordered initial state. Here, we present a model with localization arising in a very simple, completely translationally invariant quantum model, with only local interactions between spins and fermions. By identifying an extensive set of conserved quantities, we show that the system generates purely dynamically its own disorder, which gives rise to localization of fermionic degrees of freedom. Our work gives an answer to a decades old question whether quenched disorder is a necessary condition for localization. It also offers new insights into the physics of many-body localization, lattice gauge theories, and quantum disentangled liquids.
«
The venerable phenomena of Anderson localization, along with the much more recent many-body localization, both depend crucially on the presence of disorder. The latter enters either in the form of quenched disorder in the parameters of the Hamiltonian, or through a special choice of a disordered initial state. Here, we present a model with localization arising in a very simple, completely translationally invariant quantum model, with only local interactions between spins and fermions. By identif...
»