Benutzer: Gast  Login
Titel:

Autoencoders for unsupervised anomaly segmentation in brain MR images: A comparative study.

Dokumenttyp:
Journal Article; Research Support, Non-U.S. Gov't; Review
Autor(en):
Baur, Christoph; Denner, Stefan; Wiestler, Benedikt; Navab, Nassir; Albarqouni, Shadi
Abstract:
Deep unsupervised representation learning has recently led to new approaches in the field of Unsupervised Anomaly Detection (UAD) in brain MRI. The main principle behind these works is to learn a model of normal anatomy by learning to compress and recover healthy data. This allows to spot abnormal structures from erroneous recoveries of compressed, potentially anomalous samples. The concept is of great interest to the medical image analysis community as it i) relieves from the need of vast amoun...     »
Zeitschriftentitel:
Med Image Anal
Jahr:
2021
Band / Volume:
69
Volltext / DOI:
doi:10.1016/j.media.2020.101952
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/33454602
Print-ISSN:
1361-8415
TUM Einrichtung:
Fachgebiet Neuroradiologie (Prof. Zimmer)
 BibTeX