Benutzer: Gast  Login
Titel:

Subphenotyping of Patients With Aortic Stenosis by Unsupervised Agglomerative Clustering of Echocardiographic and Hemodynamic Data.

Dokumenttyp:
Article; Journal Article; Research Support, Non-U.S. Gov't
Autor(en):
Lachmann, Mark; Rippen, Elena; Schuster, Tibor; Xhepa, Erion; von Scheidt, Moritz; Pellegrini, Costanza; Trenkwalder, Teresa; Rheude, Tobias; Stundl, Anja; Thalmann, Ruth; Harmsen, Gerhard; Yuasa, Shinsuke; Schunkert, Heribert; Kastrati, Adnan; Laugwitz, Karl-Ludwig; Kupatt, Christian; Joner, Michael
Abstract:
OBJECTIVES: The aim of this retrospective analysis was to categorize patients with severe aortic stenosis (AS) according to clinical presentation by applying unsupervised machine learning. BACKGROUND: Patients with severe AS present with heterogeneous clinical phenotypes, depending on disease progression and comorbidities. METHODS: Unsupervised agglomerative clustering was applied to preprocedural data from echocardiography and right heart catheterization from 366 consecutively enrolled patients...     »
Zeitschriftentitel:
JACC Cardiovasc Interv
Jahr:
2021
Band / Volume:
14
Heft / Issue:
19
Seitenangaben Beitrag:
2127-2140
Volltext / DOI:
doi:10.1016/j.jcin.2021.08.034
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/34620391
Print-ISSN:
1936-8798
TUM Einrichtung:
Klinik für Herz- und Kreislauferkrankungen im Erwachsenenalter (Prof. Schunkert); Klinik und Poliklinik für Innere Medizin I, Kardiologie
 BibTeX