Benutzer: Gast  Login
Titel:

Roadmap on Machine learning in electronic structure

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Kulik, H J; Hammerschmidt, T; Schmidt, J; Botti, S; Marques, M A L; Boley, M; Scheffler, M; Todorović, M; Rinke, P; Oses, C; Smolyanyuk, A; Curtarolo, S; Tkatchenko, A; Bartók, A P; Manzhos, S; Ihara, M; Carrington, T; Behler, J; Isayev, O; Veit, M; Grisafi, A; Nigam, J; Ceriotti, M; Schütt, K T; Westermayr, J; Gastegger, M; Maurer, R J; Kalita, B; Burke, K; Nagai, R; Akashi, R; Sugino, O; Hermann, J; Noé, F; Pilati, S; Draxl, C; Kuban, M; Rigamonti, S; Scheidgen, M; Esters, M; Hicks, D; Toher,...     »
Abstract:
In recent years, we have been witnessing a paradigm shift in computational materials science. In fact, traditional methods, mostly developed in the second half of the XXth century, are being complemented, extended, and sometimes even completely replaced by faster, simpler, and often more accurate approaches. The new approaches, that we collectively label by machine learning, have their origins in the fields of informatics and artificial intelligence, but are making rapid inroads in all other bra...     »
Zeitschriftentitel:
Electronic Structure 2022-08
Jahr:
2022
Band / Volume:
4
Heft / Issue:
2
Seitenangaben Beitrag:
023004
Volltext / DOI:
doi:10.1088/2516-1075/ac572f
Verlag / Institution:
IOP Publishing
E-ISSN:
2516-1075
Publikationsdatum:
01.06.2022
 BibTeX