Benutzer: Gast  Login
Titel:

Compositional engineering of perovskites with machine learning

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Laakso, Jarno; Todorović, Milica; Li, Jingrui; Zhang, Guo-Xu; Rinke, Patrick
Abstract:
Perovskites are promising materials candidates for optoelectronics, but their commercialization is hindered by toxicity and materials instability. While compositional engineering can mitigate these problems by tuning perovskite properties, the enormous complexity of the perovskite materials space aggravates the search for an optimal optoelectronic material. We conducted compositional space exploration through Monte Carlo (MC) convex hull sampling, which we made tractable with machine learning (M...     »
Zeitschriftentitel:
Physical Review Materials 2022-11
Jahr:
2022
Band / Volume:
6
Heft / Issue:
11
Volltext / DOI:
doi:10.1103/physrevmaterials.6.113801
Verlag / Institution:
American Physical Society (APS)
E-ISSN:
2475-9953
Publikationsdatum:
07.11.2022
 BibTeX