Benutzer: Gast  Login
Titel:

Real-world federated learning in radiology: hurdles to overcome and benefits to gain.

Dokumenttyp:
Journal Article
Autor(en):
Bujotzek, Markus Ralf; Akünal, Ünal; Denner, Stefan; Neher, Peter; Zenk, Maximilian; Frodl, Eric; Jaiswal, Astha; Kim, Moon; Krekiehn, Nicolai R; Nickel, Manuel; Ruppel, Richard; Both, Marcus; Döllinger, Felix; Opitz, Marcel; Persigehl, Thorsten; Kleesiek, Jens; Penzkofer, Tobias; Maier-Hein, Klaus; Bucher, Andreas; Braren, Rickmer
Abstract:
OBJECTIVE: Federated Learning (FL) enables collaborative model training while keeping data locally. Currently, most FL studies in radiology are conducted in simulated environments due to numerous hurdles impeding its translation into practice. The few existing real-world FL initiatives rarely communicate specific measures taken to overcome these hurdles. To bridge this significant knowledge gap, we propose a comprehensive guide for real-world FL in radiology. Minding efforts to implement real-wo...     »
Zeitschriftentitel:
J Am Med Inform Assoc
Jahr:
2025
Band / Volume:
32
Heft / Issue:
1
Seitenangaben Beitrag:
193-205
Volltext / DOI:
doi:10.1093/jamia/ocae259
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/39455061
Print-ISSN:
1067-5027
TUM Einrichtung:
Institut für Diagnostische und Interventionelle Radiologie (Prof. Makowski)
 BibTeX