User: Guest  Login
Title:

Real-world federated learning in radiology: hurdles to overcome and benefits to gain.

Document type:
Journal Article
Author(s):
Bujotzek, Markus Ralf; Akünal, Ünal; Denner, Stefan; Neher, Peter; Zenk, Maximilian; Frodl, Eric; Jaiswal, Astha; Kim, Moon; Krekiehn, Nicolai R; Nickel, Manuel; Ruppel, Richard; Both, Marcus; Döllinger, Felix; Opitz, Marcel; Persigehl, Thorsten; Kleesiek, Jens; Penzkofer, Tobias; Maier-Hein, Klaus; Bucher, Andreas; Braren, Rickmer
Abstract:
OBJECTIVE: Federated Learning (FL) enables collaborative model training while keeping data locally. Currently, most FL studies in radiology are conducted in simulated environments due to numerous hurdles impeding its translation into practice. The few existing real-world FL initiatives rarely communicate specific measures taken to overcome these hurdles. To bridge this significant knowledge gap, we propose a comprehensive guide for real-world FL in radiology. Minding efforts to implement real-wo...     »
Journal title abbreviation:
J Am Med Inform Assoc
Year:
2025
Journal volume:
32
Journal issue:
1
Pages contribution:
193-205
Fulltext / DOI:
doi:10.1093/jamia/ocae259
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/39455061
Print-ISSN:
1067-5027
TUM Institution:
Institut für Diagnostische und Interventionelle Radiologie (Prof. Makowski)
 BibTeX