Textile wastewater treatment poses global challenges due to complex and costly processes, particularly in the adsorption-based decolourization step. Existing experimental methodologies for adsorption suffer from inconsistencies, hindering comparability across studies. To address this, we developed a universal setup integrating conventional adsorption methods with pharmaceutical dissolution techniques. This approach provides continuous UV-VIS monitoring of adsorption processes without external filtration, which is suitable for both fine powders (∼microns) and granular particles (∼millimetres) and is applicable to both natural and synthetic adsorbents. Case studies conducted with powdered and granular adsorbents confirmed this method's robustness, reproducibility, and enhanced accuracy, allowing real-time, precise monitoring. Overall, this versatile approach significantly improves reliability in adsorption experiments, offering a broadly applicable solution for adsorption monitoring in wastewater treatment research.
• A versatile setup combining adsorption methods with flow-through UV-VIS spectrometry.
• Enables continuous monitoring of decolourization without the need for external filtration.
• Applicable to a wide range of adsorbent materials, from fine powders to granulates.
«
Textile wastewater treatment poses global challenges due to complex and costly processes, particularly in the adsorption-based decolourization step. Existing experimental methodologies for adsorption suffer from inconsistencies, hindering comparability across studies. To address this, we developed a universal setup integrating conventional adsorption methods with pharmaceutical dissolution techniques. This approach provides continuous UV-VIS monitoring of adsorption processes without external fi...
»