Benutzer: Gast  Login
Titel:

Self-pruning Graph Neural Network for Predicting Inflammatory Disease Activity in Multiple Sclerosis from Brain MR Images

Dokumenttyp:
Proceedings Paper
Autor(en):
Prabhakar, Chinmay; Li, Hongwei Bran; Paetzold, Johannes C.; Loehr, Timo; Niu, Chen; Muhlau, Mark; Rueckert, Daniel; Wiestler, Benedikt; Menze, Bjoern
Abstract:
Multiple Sclerosis (MS) is a severe neurological disease characterized by inflammatory lesions in the central nervous system. Hence, predicting inflammatory disease activity is crucial for disease assessment and treatment. However, MS lesions can occur throughout the brain and vary in shape, size and total count among patients. The high variance in lesion load and locations makes it challenging for machine learning methods to learn a globally effective representation of whole-brain MRI scans to...     »
Zeitschriftentitel:
Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv
Jahr:
2023
Band / Volume:
14227
Seitenangaben Beitrag:
226-236
Volltext / DOI:
doi:10.1007/978-3-031-43993-3_22
Print-ISSN:
0302-9743
TUM Einrichtung:
Professur für AI for Image-Guided Diagnosis and Therapy (Prof. Wiestler)
 BibTeX