Benutzer: Gast  Login
Titel:

Bias in Unsupervised Anomaly Detection in Brain MRI

Dokumenttyp:
Proceedings Paper
Autor(en):
Bercea, Cosmin I.; Puyol-Anton, Esther; Wiestler, Benedikt; Rueckert, Daniel; Schnabel, Julia A.; King, Andrew P.
Abstract:
Unsupervised anomaly detection methods offer a promising and flexible alternative to supervised approaches, holding the potential to revolutionize medical scan analysis and enhance diagnostic performance. In the current landscape, it is commonly assumed that differences between a test case and the training distribution are attributed solely to pathological conditions, implying that any disparity indicates an anomaly. However, the presence of other potential sources of distributional shift, inclu...     »
Zeitschriftentitel:
Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv
Jahr:
2023
Band / Volume:
14242
Seitenangaben Beitrag:
122-131
Volltext / DOI:
doi:10.1007/978-3-031-45249-9_12
Print-ISSN:
0302-9743
TUM Einrichtung:
Professur für AI for Image-Guided Diagnosis and Therapy (Prof. Wiestler)
 BibTeX