Benutzer: Gast  Login
Titel:

Federated disentangled representation learning for unsupervised brain anomaly detection

Dokumenttyp:
Article
Autor(en):
Bercea, Cosmin; Wiestler, Benedikt; Rueckert, Daniel; Albarqouni, Shadi
Abstract:
With the advent of deep learning and increasing use of brain MRIs, a great amount of interest has arisen in automated anomaly segmentation to improve clinical workflows; however, it is time-consuming and expensive to curate medical imaging. Moreover, data are often scattered across many institutions, with privacy regulations hampering its use. Here we present FedDis to collaboratively train an unsupervised deep convolutional autoencoder on 1,532 healthy magnetic resonance scans from four differ...     »
Zeitschriftentitel:
Nat. Mach. Intell.
Jahr:
2022
Band / Volume:
4
Heft / Issue:
8
Seitenangaben Beitrag:
685-+
Volltext / DOI:
doi:10.1038/s42256-022-00515-2
TUM Einrichtung:
Institut für KI und Informatik in der Medizin
 BibTeX