Matchgates are an especially multiflorous class of two-qubit nearest-neighbour quantum gates, defined by a set of algebraic constraints. They occur for example in the theory of perfect matchings of graphs, non-interacting fermions and one-dimensional spin chains. We show that the computational power of circuits of matchgates is equivalent to that of space-bounded quantum computation with unitary gates, with space restricted to being logarithmic in the width of the matchgate circuit. In particular, for the conventional setting of polynomial-sized (logarithmic-space generated) families of matchgate circuits, known to be classically simulatable, we characterize their power as coinciding with polynomial-time and logarithmic-space-bounded universal unitary quantum computation.
«
Matchgates are an especially multiflorous class of two-qubit nearest-neighbour quantum gates, defined by a set of algebraic constraints. They occur for example in the theory of perfect matchings of graphs, non-interacting fermions and one-dimensional spin chains. We show that the computational power of circuits of matchgates is equivalent to that of space-bounded quantum computation with unitary gates, with space restricted to being logarithmic in the width of the matchgate circuit. In particula...
»