Benutzer: Gast  Login
Titel:

A deep reinforcement learning framework for dynamic optimization of numerical schemes for compressible flow simulations

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Feng, Yiqi; Schranner, Felix S.; Winter, Josef; Adams, Nikolaus A.
Abstract:
Marginal or under-resolved simulations of compressible flow configurations that often occur in practical applications classically are enabled by administering sufficient numerical dissipation to keep the simulation stable. Such measures, however, often are physically inconsistent due to non-selectively altering of dynamics across scales. Sustaining physically consistent large scale dynamics requires the numerical solution to effectively model non-resolved small scale dynamics. In this work, we p...     »
Stichworte:
Adaptive numerical scheme optimization; Compressible flow simulation; Deep reinforcement learning; Dispersion-dissipation relation
Dewey Dezimalklassifikation:
620 Ingenieurwissenschaften
Zeitschriftentitel:
Journal of Computational Physics
Jahr:
2023
Band / Volume:
493
Seitenangaben Beitrag:
112436
Nachgewiesen in:
Scopus
Sprache:
en
Volltext / DOI:
doi:10.1016/j.jcp.2023.112436
Verlag / Institution:
Elsevier BV
E-ISSN:
0021-9991
Hinweise:
Funding text The first author acknowledges financial support from the China Scholarship Council (No. 201906060144 )
Eingereicht (bei Zeitschrift):
08.05.2023
Angenommen (von Zeitschrift):
13.08.2023
Publikationsdatum:
01.11.2023
TUM Einrichtung:
Lehrstuhl für Aerodynamik und Strömungsmechanik
 BibTeX