User: Guest  Login
Title:

Prediction of Complications and Surgery Duration in Primary Total Hip Arthroplasty Using Machine Learning: The Necessity of Modified Algorithms and Specific Data.

Document type:
Journal Article
Author(s):
Lazic, Igor; Hinterwimmer, Florian; Langer, Severin; Pohlig, Florian; Suren, Christian; Seidl, Fritz; Rückert, Daniel; Burgkart, Rainer; von Eisenhart-Rothe, Rüdiger
Abstract:
BACKGROUND: Machine Learning (ML) in arthroplasty is becoming more popular, as it is perfectly suited for prediction models. However, results have been heterogeneous so far. We hypothesize that an accurate ML model for outcome prediction in THA must be able to compute arthroplasty-specific data. In this study, we evaluate a ML approach applying data from two German arthroplasty-specific registries to predict adverse outcomes after THA, after careful evaluations of ML algorithms, outcome and inpu...     »
Journal title abbreviation:
J Clin Med
Year:
2022
Journal volume:
11
Journal issue:
8
Fulltext / DOI:
doi:10.3390/jcm11082147
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/35456239
TUM Institution:
Institut für KI und Informatik in der Medizin (Prof. Rückert); Klinik und Poliklinik für Orthopädie und Sportorthopädie (Prof. von Eisenhart-Rothe); Klinik und Poliklinik für Unfallchirurgie (Prof. Biberthaler)
 BibTeX