User: Guest  Login
Title:

ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset.

Document type:
Multicenter Study; Journal Article
Author(s):
Hernandez Petzsche, Moritz R; de la Rosa, Ezequiel; Hanning, Uta; Wiest, Roland; Valenzuela, Waldo; Reyes, Mauricio; Meyer, Maria; Liew, Sook-Lei; Kofler, Florian; Ezhov, Ivan; Robben, David; Hutton, Alexandre; Friedrich, Tassilo; Zarth, Teresa; Bürkle, Johannes; Baran, The Anh; Menze, Björn; Broocks, Gabriel; Meyer, Lukas; Zimmer, Claus; Boeckh-Behrens, Tobias; Berndt, Maria; Ikenberg, Benno; Wiestler, Benedikt; Kirschke, Jan S
Abstract:
Magnetic resonance imaging (MRI) is an important imaging modality in stroke. Computer based automated medical image processing is increasingly finding its way into clinical routine. The Ischemic Stroke Lesion Segmentation (ISLES) challenge is a continuous effort to develop and identify benchmark methods for acute and sub-acute ischemic stroke lesion segmentation. Here we introduce an expert-annotated, multicenter MRI dataset for segmentation of acute to subacute stroke lesions ( https://doi.org/...     »
Journal title abbreviation:
Sci Data
Year:
2022
Journal volume:
9
Journal issue:
1
Fulltext / DOI:
doi:10.1038/s41597-022-01875-5
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/36496501
TUM Institution:
Professur für AI for Image-Guided Diagnosis and Therapy (Prof. Wiestler); Professur für Neuroradiologie (Prof. Zimmer)
 BibTeX