User: Guest  Login
Title:

Dataset of prostate MRI annotated for anatomical zones and cancer.

Document type:
Journal Article
Author(s):
Adams, Lisa C; Makowski, Marcus R; Engel, Günther; Rattunde, Maximilian; Busch, Felix; Asbach, Patrick; Niehues, Stefan M; Vinayahalingam, Shankeeth; van Ginneken, Bram; Litjens, Geert; Bressem, Keno K
Abstract:
In the present work, we present a publicly available, expert-segmented representative dataset of 158 3.0 Tesla biparametric MRIs [1]. There is an increasing number of studies investigating prostate and prostate carcinoma segmentation using deep learning (DL) with 3D architectures [2], [3], [4], [5], [6], [7]. The development of robust and data-driven DL models for prostate segmentation and assessment is currently limited by the availability of openly available expert-annotated datasets [8], [9],...     »
Journal title abbreviation:
Data Brief
Year:
2022
Journal volume:
45
Fulltext / DOI:
doi:10.1016/j.dib.2022.108739
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/36426089
TUM Institution:
Institut für Diagnostische und Interventionelle Radiologie
 BibTeX