User: Guest  Login
Original title:
Automated Creation, Evaluation and Configuration of Markerless Object Tracking for Superimposed Augmented Reality
Translated title:
Automatisierte Erzeugung, Evaluation und Konfiguration von markerlosen Objekt-Tracking-Verfahren für den Einsatz von Augmented Reality mit deckungsgleicher Überlagerung
Author:
Thiel, Kevin Kennard
Year:
2023
Document type:
Dissertation
Faculty/School:
TUM School of Computation, Information and Technology
Advisor:
Klinker, Gudrun J. (Prof., Ph.D.)
Referee:
Klinker, Gudrun J. (Prof., Ph.D.); Günnemann, Stephan (Prof. Dr.)
Language:
en
Subject group:
DAT Datenverarbeitung, Informatik
Keywords:
Augmented Reality, Object Tracking, Automated Optimization, Automated Configuration, Parameter Tuning, Machine Learning, Artificial Neural Networks, Bayesian Optimization, Automotive Industry
Translated keywords:
Erweiterte Realität, Objekt-Tracking, Automatisierte Optimierung, Automatisierte Konfiguration, Parameterjustierung, Maschinelles Lernen, Künstliche neuronale Netzwerke, Bayes’sche Optimierung, Automobilindustrie
TUM classification:
DAT 758
Abstract:
Markerless object tracking is a key technology to enable superimposed augmented reality in large industries to advance digitalization. Yet, its application comes with challenges as those algorithms appear as black boxes with complex configuration procedures. In a broad survey, two frameworks have been developed and validated, that show high potential and benefits: a bottom-up approach that uses synthetic data to create trackers in an iterative cycle and a top-down approach that utilizes syntheti...     »
Translated abstract:
Markerloses Objekt-Tracking ist eine Schlüsseltechnologie, die Augmented Reality mit deckungsgleicher Überlagerung ermöglicht, um Digitalisierung in Großindustrien voranzutreiben. Deren Nutzung steht jedoch unter Herausforderungen, da es sich um Blackbox-Verfahren mit komplexer Konfiguration handelt. In einer breit angelegten Untersuchung wurden zwei Frameworks entwickelt und validiert: Ein Bottom-Up-Ansatz, der mit synthetischen Daten Tracker erzeugt und einen Top-Down-Ansatz, der existierende...     »
WWW:
https://mediatum.ub.tum.de/?id=1692878
Date of submission:
19.12.2022
Oral examination:
17.07.2023
File size:
244408930 bytes
Pages:
378
Urn (citeable URL):
https://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20230717-1692878-1-1
Last change:
07.09.2023
 BibTeX