Benutzer: Gast  Login
Weniger Felder
Einfache Suche
Originaltitel:
Representing and Recovering Structured High-Dimensional Data: Fast Dimension Reduction, Recovery Guarantees, and Neural Network Representation
Übersetzter Titel:
Darstellung und Rekonstruktion strukturierter hochdimensionaler Daten: Schnelle Dimensionsreduktion, Rekonstruktionsgarantien und Darstellung durch neuronale Netze
Autor:
Bamberger, Stefan Julian Bernhard
Jahr:
2023
Dokumenttyp:
Dissertation
Fakultät/School:
TUM School of Computation, Information and Technology
Betreuer:
Krahmer, Felix (Prof. Dr.)
Gutachter:
Krahmer, Felix (Prof. Dr.); Kapralov, Michael (Prof. Dr.); Ward, Rachel (Assoc. Prof. Dr.)
Sprache:
en
Fachgebiet:
MAT Mathematik
Stichworte:
structured data, recovery guarantees, dimension reduction, sparse vectors, neural networks
Übersetzte Stichworte:
strukturierte Daten, Rekonstruktionsgarantien, Dimensionsreduktion, dünnbesetzte Vektoren, neuronale Netze
TU-Systematik:
MAT 490; MAT 917
Kurzfassung:
This thesis concerns data acquisition and reconstruction under specific structural assumptions. First, we prove an optimal embedding dimension for a class of Johnson-Lindenstrauss embeddings for Kronecker products of multiple vectors. Then we study related higher-order random tensors. In addition, we investigate to what extent neural networks can recover sparse vectors and associated problems. Finally, we improve recovery guarantees for vectors with limited numbers of non-zero entries in multipl...     »
Übersetzte Kurzfassung:
Zentrales Thema dieser Arbeit sind Datenerfassung und Rekonstruktion unter Strukturannahmen. Im ersten Teil beweisen wir eine optimale Einbettungsdimension für eine Klasse von Johnson-Lindenstrauss-Einbettungen für Kronecker-Produkte mehrerer Vektoren. Anschließend behandeln wir damit verbundene Zufallstensoren höherer Ordnung. Darüber hinaus untersuchen wir, inwiefern neuronale Netze dünnbesetzte Vektoren rekonstruieren können, sowie verwandte Probleme. Im letzten Teil verbessern wir Ergebnisse...     »
WWW:
https://mediatum.ub.tum.de/?id=1659564
Eingereicht am:
30.05.2022
Mündliche Prüfung:
26.04.2023
Dateigröße:
1814055 bytes
Seiten:
165
Urn (Zitierfähige URL):
https://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20230426-1659564-1-8
Letzte Änderung:
05.06.2023
 BibTeX