User: Guest  Login
Original title:
Topic-Driven Characterization of Social Relationships for the Analysis of Social Influence
Translated title:
Topic-gestützte Charakterisierung von sozialen Beziehungen für die Analyse von sozialem Einfluß
Author:
Hauffa, Jan Lukas
Year:
2023
Document type:
Dissertation
Faculty/School:
TUM School of Computation, Information and Technology
Advisor:
Groh, Georg (Prof. Dr.)
Referee:
Groh, Georg (Prof. Dr.); Großklags, Jens (Prof. Dr.)
Language:
en
Subject group:
DAT Datenverarbeitung, Informatik
TUM classification:
DAT 500
Abstract:
How can we learn about the nature of relationships that people form online? We argue that topic models can produce content-based representations of social relationships that are human-interpretable and useful for computational analysis. Given communication data (Twitter, Facebook, e-mail), we attempt to detect social influence at two levels of aggregation. At the micro level, we explore the connection between influence and Granger-causality. At the meso level, testing for influence is reframed a...     »
Translated abstract:
Wie kann man soziale Beziehungen analysieren, die im Netz entstehen? Topic-Modelle können inhaltsbasierte Repräsentationen sozialer Beziehungen hervorbringen, die von Menschen interpretierbar und für die rechnergestützte Auswertung tauglich sind. Anhand von Kommunikationsdaten (Twitter, Facebook, E-Mail) versuchen wir, sozialen Einfluß auf zwei verschiedenen Ebenen zu erkennen. Auf der Mikro-Ebene untersuchen wir den Zusammenhang zwischen Einfluß und Granger-Kausalität. Auf der Meso-Ebene wird d...     »
WWW:
https://mediatum.ub.tum.de/?id=1684883
Date of submission:
22.08.2022
Oral examination:
21.03.2023
File size:
7538705 bytes
Pages:
323
Urn (citeable URL):
https://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20230321-1684883-1-4
Last change:
10.11.2023
 BibTeX