Benutzer: Gast  Login
Titel:

Fetal Cortex Segmentation with Topology and Thickness Loss Constraints

Dokumenttyp:
Proceedings Paper
Autor(en):
Li, Liu; Ma, Qiang; Li, Zeju; Ouyang, Cheng; Zhang, Weitong; Price, Anthony; Kyriakopoulou, Vanessa; Grande, Lucilio C.; Makropoulos, Antonis; Hajnal, Joseph; Rueckert, Daniel; Kainz, Bernhard; Alansary, Amir
Abstract:
The segmentation of the fetal cerebral cortex from magnetic resonance imaging (MRI) is an important tool for neurobiological research about the developing human brain. Manual segmentation is difficult and time-consuming. Limited image resolution and partial volume effects introduce errors and labeling noise when attempting to automate the process through machine learning. The significant morphological changes observed during brain growth pose additional challenges for learning-based image segmen...     »
Zeitschriftentitel:
Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv
Jahr:
2022
Band / Volume:
13755
Seitenangaben Beitrag:
123-133
Volltext / DOI:
doi:10.1007/978-3-031-23223-7_11
Print-ISSN:
0302-9743
TUM Einrichtung:
Institut für KI und Informatik in der Medizin (Prof. Rückert)
 BibTeX