Benutzer: Gast  Login
Titel:

A Novel Machine Learning-Based Point-Score Model as a Non-Invasive Decision-Making Tool for Identifying Infected Ascites in Patients with Hydropic Decompensated Liver Cirrhosis: A Retrospective Multicentre Study.

Dokumenttyp:
Article; Journal Article
Autor(en):
Würstle, Silvia; Hapfelmeier, Alexander; Karapetyan, Siranush; Studen, Fabian; Isaakidou, Andriana; Schneider, Tillman; Schmid, Roland M; von Delius, Stefan; Gundling, Felix; Triebelhorn, Julian; Burgkart, Rainer; Obermeier, Andreas; Mayr, Ulrich; Heller, Stephan; Rasch, Sebastian; Lahmer, Tobias; Geisler, Fabian; Chan, Benjamin; Turner, Paul E; Rothe, Kathrin; Spinner, Christoph D; Schneider, Jochen
Abstract:
This study is aimed at assessing the distinctive features of patients with infected ascites and liver cirrhosis and developing a scoring system to allow for the accurate identification of patients not requiring abdominocentesis to rule out infected ascites. A total of 700 episodes of patients with decompensated liver cirrhosis undergoing abdominocentesis between 2006 and 2020 were included. Overall, 34 clinical, drug, and laboratory features were evaluated using machine learning to identify key...     »
Zeitschriftentitel:
Antibiotics (Basel)
Jahr:
2022
Band / Volume:
11
Heft / Issue:
11
Volltext / DOI:
doi:10.3390/antibiotics11111610
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/36421254
TUM Einrichtung:
Institut für KI und Informatik in der Medizin (Prof. Rückert); Klinik und Poliklinik für Innere Medizin II, Gastroenterologie (Prof. Schmid); Klinik und Poliklinik für Orthopädie und Sportorthopädie (Prof. von Eisenhart-Rothe); Lehrstuhl für Allgemeinmedizin (Prof. Schneider); Lehrstuhl für Medizinische Informatik (Prof. Boeker)
 BibTeX