User: Guest  Login
Title:

Swarm Learning for decentralized and confidential clinical machine learning.

Document type:
Journal Article; Research Support, Non-U.S. Gov't
Author(s):
Warnat-Herresthal, Stefanie; Schultze, Hartmut; Shastry, Krishnaprasad Lingadahalli; Manamohan, Sathyanarayanan; Mukherjee, Saikat; Garg, Vishesh; Sarveswara, Ravi; Händler, Kristian; Pickkers, Peter; Aziz, N Ahmad; Ktena, Sofia; Tran, Florian; Bitzer, Michael; Ossowski, Stephan; Casadei, Nicolas; Herr, Christian; Petersheim, Daniel; Behrends, Uta; Kern, Fabian; Fehlmann, Tobias; Schommers, Philipp; Lehmann, Clara; Augustin, Max; Rybniker, Jan; Altmüller, Janine; Mishra, Neha; Bernardes, Joana P...     »
Abstract:
Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm...     »
Journal title abbreviation:
Nature
Year:
2021
Journal volume:
594
Journal issue:
7862
Pages contribution:
265-270
Fulltext / DOI:
doi:10.1038/s41586-021-03583-3
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/34040261
Print-ISSN:
0028-0836
TUM Institution:
1036; 1067; 611; Klinik und Poliklinik für Kinder- und Jugendmedizin
 BibTeX