User: Guest  Login
More Searchfields
Simple search
Title:

Tracked 3D ultrasound and deep neural network-based thyroid segmentation reduce interobserver variability in thyroid volumetry.

Document type:
Journal Article
Author(s):
Krönke, Markus; Eilers, Christine; Dimova, Desislava; Köhler, Melanie; Buschner, Gabriel; Schweiger, Lilit; Konstantinidou, Lemonia; Makowski, Marcus; Nagarajah, James; Navab, Nassir; Weber, Wolfgang; Wendler, Thomas
Abstract:
Thyroid volumetry is crucial in the diagnosis, treatment, and monitoring of thyroid diseases. However, conventional thyroid volumetry with 2D ultrasound is highly operator-dependent. This study compares 2D and tracked 3D ultrasound with an automatic thyroid segmentation based on a deep neural network regarding inter- and intraobserver variability, time, and accuracy. Volume reference was MRI. 28 healthy volunteers (24-50 a) were scanned with 2D and 3D ultrasound (and by MRI) by three physicians (MD 1, 2, 3) with different experience levels (6, 4, and 1 a). In the 2D scans, the thyroid lobe volumes were calculated with the ellipsoid formula. A convolutional deep neural network (CNN) automatically segmented the 3D thyroid lobes. 26, 6, and 6 random lobe scans were used for training, validation, and testing, respectively. On MRI (T1 VIBE sequence) the thyroid was manually segmented by an experienced MD. MRI thyroid volumes ranged from 2.8 to 16.7ml (mean 7.4, SD 3.05). The CNN was trained to obtain an average Dice score of 0.94. The interobserver variability comparing two MDs showed mean differences for 2D and 3D respectively of 0.58 to 0.52ml (MD1 vs. 2), -1.33 to -0.17ml (MD1 vs. 3) and -1.89 to -0.70ml (MD2 vs. 3). Paired samples t-tests showed significant differences for 2D (p = .140, p = .002 and p = .002) and none for 3D (p = .176, p = .722 and p = .057). Intraobsever variability was similar for 2D and 3D ultrasound. Comparison of ultrasound volumes and MRI volumes showed a significant difference for the 2D volumetry of all MDs (p = .002, p = .009, p <.001), and no significant difference for 3D ultrasound (p = .292, p = .686, p = 0.091). Acquisition time was significantly shorter for 3D ultrasound. Tracked 3D ultrasound combined with a CNN segmentation significantly reduces interobserver variability in thyroid volumetry and increases the accuracy of the measurements with shorter acquisition times.
Journal title abbreviation:
PLoS ONE
Year:
2022
Journal volume:
17
Journal issue:
7
Fulltext / DOI:
doi:10.1371/journal.pone.0268550
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/35905038
Print-ISSN:
1932-6203
TUM Institution:
Institut für Diagnostische und Interventionelle Radiologie ; Klinik und Poliklinik für Nuklearmedizin
 BibTeX