User: Guest  Login
Title:

A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging.

Document type:
Journal Article; Research Support, Non-U.S. Gov't
Author(s):
Xiong, Zhaohan; Xia, Qing; Hu, Zhiqiang; Huang, Ning; Bian, Cheng; Zheng, Yefeng; Vesal, Sulaiman; Ravikumar, Nishant; Maier, Andreas; Yang, Xin; Heng, Pheng-Ann; Ni, Dong; Li, Caizi; Tong, Qianqian; Si, Weixin; Puybareau, Elodie; Khoudli, Younes; Géraud, Thierry; Chen, Chen; Bai, Wenjia; Rueckert, Daniel; Xu, Lingchao; Zhuang, Xiahai; Luo, Xinzhe; Jia, Shuman; Sermesant, Maxime; Liu, Yashu; Wang, Kuanquan; Borra, Davide; Masci, Alessandro; Corsi, Cristiana; de Vente, Coen; Veta, Mitko; Karim, R...     »
Abstract:
Segmentation of medical images, particularly late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) used for visualizing diseased atrial structures, is a crucial first step for ablation treatment of atrial fibrillation. However, direct segmentation of LGE-MRIs is challenging due to the varying intensities caused by contrast agents. Since most clinical studies have relied on manual, labor-intensive approaches, automatic methods are of high interest, particularly optimized machine learning...     »
Journal title abbreviation:
Med Image Anal
Year:
2021
Journal volume:
67
Fulltext / DOI:
doi:10.1016/j.media.2020.101832
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/33166776
Print-ISSN:
1361-8415
TUM Institution:
Institut für Medizinische Statistik und Epidemiologie
 BibTeX