Benutzer: Gast  Login
Titel:

Heartbeat Classification by Random Forest With a Novel Context Feature: A Segment Label.

Dokumenttyp:
Journal Article; Research Support, Non-U.S. Gov't
Autor(en):
Zou, Congyu; Muller, Alexander; Wolfgang, Utschick; Ruckert, Daniel; Muller, Phillip; Becker, Matthias; Steger, Alexander; Martens, Eimo
Abstract:
OBJECTIVE: Physicians use electrocardiograms (ECG) to diagnose cardiac abnormalities. Sometimes they need to take a deeper look at abnormal heartbeats to diagnose the patients more precisely. The objective of this research is to design a more accurate heartbeat classification algorithm to assist physicians in identifying specific types of the heartbeat. METHODS AND PROCEDURES: In this paper, we propose a novel feature called a segment label, to improve the performance of a heartbeat classifier....     »
Zeitschriftentitel:
IEEE J Transl Eng Health Med
Jahr:
2022
Band / Volume:
10
Volltext / DOI:
doi:10.1109/JTEHM.2022.3202749
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/36105378
TUM Einrichtung:
Institut für KI und Informatik in der Medizin (Prof. Rückert); Klinik und Poliklinik für Innere Medizin I, Kardiologie (Prof. Laugwitz)
 BibTeX