User: Guest  Login
Title:

Improvement of high-order Finite-Difference schemes at solid walls for the linearized Euler equations

Document type:
Konferenzbeitrag
Author(s):
Izsak, Marian G.; Kaltenbach, Hans-Jakob
Abstract:
An alternate description of stable discretizations at boundaries with explicit finite-difference stencils of arbitrary order for solid walls located on a node is presented to solve the linearized Euler equations in 1D without using a stabilizing filter or artificial damping. The key to this approach is incorporating additional boundary constraints besides the physical impermeability condition into Hermite-based finite-difference stencils in a prescribed region near the boundary. The application of our ansatz is equivalent to ghost point formulations for specific constellations, e.g. methods introduced by Tam & Dong (1994) and Gloerfelt (2001). A numerical reflection problem demonstrates the accuracy in 1D for high-order schemes of 6th- and 20th-order. Stability analysis proves the significance of using multiple boundary constraints to improve the numerical stability of a boundary scheme. Our new formalism for boundary methods allows the characterization of propagation features of modified boundary stencils of first derivatives by spatial Fourier analysis. Likewise, incorporating multiple boundary constraints significantly improves the modified wavenumber signature of the boundary stencils.
Dewey Decimal Classification:
620 Ingenieurwissenschaften
Book / Congress title:
28th AIAA/CEAS Aeroacoustics 2022 Conference
Publisher:
American Institute of Aeronautics and Astronautics
Date of publication:
13.06.2022
Year:
2022
Covered by:
Scopus
Language:
en
Fulltext / DOI:
doi:10.2514/6.2022-2922
WWW:
https://arc.aiaa.org/doi/10.2514/6.2022-2922
TUM Institution:
Fachgebiet für Strömungsbeeinflussung und Aeroakustik
 BibTeX