User: Guest  Login
Title:

Machine learning assisted real-time deformability cytometry of CD34+ cells allows to identify patients with myelodysplastic syndromes.

Document type:
Article; Journal Article; Research Support, Non-U.S. Gov't
Author(s):
Herbig, Maik; Jacobi, Angela; Wobus, Manja; Weidner, Heike; Mies, Anna; Kräter, Martin; Otto, Oliver; Thiede, Christian; Weickert, Marie-Theresa; Götze, Katharina S; Rauner, Martina; Hofbauer, Lorenz C; Bornhäuser, Martin; Guck, Jochen; Ader, Marius; Platzbecker, Uwe; Balaian, Ekaterina
Abstract:
Diagnosis of myelodysplastic syndrome (MDS) mainly relies on a manual assessment of the peripheral blood and bone marrow cell morphology. The WHO guidelines suggest a visual screening of 200 to 500 cells which inevitably turns the assessor blind to rare cell populations and leads to low reproducibility. Moreover, the human eye is not suited to detect shifts of cellular properties of entire populations. Hence, quantitative image analysis could improve the accuracy and reproducibility of MDS diagn...     »
Journal title abbreviation:
Sci Rep
Year:
2022
Journal volume:
12
Journal issue:
1
Fulltext / DOI:
doi:10.1038/s41598-022-04939-z
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/35042906
Print-ISSN:
2045-2322
TUM Institution:
III. Medizinische Klinik und Poliklinik (Hämatologie / Onkologie)
 BibTeX