In this paper, we present a quantum information framework for the entanglement behavior of the low-energy quasiparticle (QP) excitations in various quantum phases in one-dimensional (1D) systems. We first establish an exact correspondence between the correlation matrix and the QP entanglement Hamiltonian for free fermions and find an extended in-gap state in the QP entanglement Hamiltonian as a consequence of the position uncertainty of the QP. A more general understanding of such an in-gap state can be extended to a Kramers theorem for the QP entanglement Hamiltonian, which also applies to strongly interacting systems. Further, we present a set of ubiquitous entanglement spectrum features, dubbed entanglement fragmentation, conditional mutual information, and measurement-induced nonlocal entanglement for QPs in 1D symmetry protected topological phases. Our result thus provides another framework to identify different phases of matter in terms of their QP entanglement.
«
In this paper, we present a quantum information framework for the entanglement behavior of the low-energy quasiparticle (QP) excitations in various quantum phases in one-dimensional (1D) systems. We first establish an exact correspondence between the correlation matrix and the QP entanglement Hamiltonian for free fermions and find an extended in-gap state in the QP entanglement Hamiltonian as a consequence of the position uncertainty of the QP. A more general understanding of such an in-gap stat...
»