Disorder or interactions can turn metals into insulators. One of the simplest settings in which to study this physics is given by the Falikov-Kimball (FK) model, which describes itinerant fermions interacting with a classical Ising background field. Despite the translational invariance of the model, inhomogeneous configurations of the background field give rise to effective disorder physics which lead to a rich phase diagram in two (or more) dimensions with finite-temperature charge-density wave (CDW) transitions and interaction-tuned Anderson versus Mott localized phases. Here, we propose a generalized FK model in one dimension with long-range interactions which shows a similarly rich phase diagram. We use an exact Markov chain Monte Carlo method to map the phase diagram and compute the energy-resolved localization properties of the fermions. We compare the behavior of this transitionally invariant model to an Anderson model of uncorrelated binary disorder about a background CDW field which confirms that the fermionic sector only fully localizes for very large system sizes.
«
Disorder or interactions can turn metals into insulators. One of the simplest settings in which to study this physics is given by the Falikov-Kimball (FK) model, which describes itinerant fermions interacting with a classical Ising background field. Despite the translational invariance of the model, inhomogeneous configurations of the background field give rise to effective disorder physics which lead to a rich phase diagram in two (or more) dimensions with finite-temperature charge-density wave...
»