The removal of kidney stones can lead to small residual fragments remaining in the human body. Residual stone fragments can act as seeds for kidney stone crystallization and may necessitate another intervention. Therefore, it is important to create a consistent model with a particle size comparable to the range of kidney stone fragments. Thus, the size-determining parameters such as supersaturation ratio, energy input and pH value are examined. The batch crystallizations were performed with supersaturation ratios between 5.07 and 6.12. The compositions of the dried samples were analyzed with Raman spectroscopy, infrared spectroscopy, and X-ray diffraction (XRD). The samples were identified as calcium oxalate monohydrate (COM) with spectroscopic analysis while calcium oxalate dihydrate (COD) being the most prominent crystalline species at all supersaturation ratios for the investigated conditions. The aggregate size, obtained with analytical centrifugation (AC), varied between 2.9 and 4.3 μm, while the crystallite domain size, obtained from XRD, varied from 40 to 61 nm. Our results indicate that particle sizes increase with increasing supersaturation, energy input and pH. All syntheses yield a high particle heterogeneity and represent an ideal basis for reference materials of small kidney stone fragments. These results will help to better understand and control the crystallization of calcium oxalate and the aggregation of such of these pseudo-polymorphs.
«
The removal of kidney stones can lead to small residual fragments remaining in the human body. Residual stone fragments can act as seeds for kidney stone crystallization and may necessitate another intervention. Therefore, it is important to create a consistent model with a particle size comparable to the range of kidney stone fragments. Thus, the size-determining parameters such as supersaturation ratio, energy input and pH value are examined. The batch crystallizations were performed with supe...
»