Benutzer: Gast  Login
Titel:

Ionospheric VTEC Forecasting using Machine Learning

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Vortrag / Präsentation
Autor(en):
Natras R., Schmidt M.
Abstract:
The accuracy and reliability of Global Navigation Satellite System (GNSS) applications are affected by the state of the Earth‘s ionosphere, especially when using single frequency observations, which are employed mostly in mass-market GNSS receivers. In addition, space weather can be the cause of strong sudden disturbances in the ionosphere, representing a major risk for GNSS performance and reliability. Accurate corrections of ionospheric effects and early warning information in the presence of...     »
Stichworte:
Machine Learning, Ionosphere, VTEC, Space Weather
Kongress- / Buchtitel:
European Geosciences Union (EGU) General Assembly
Datum der Konferenz:
2021-04-19/30
Jahr:
2021
Jahr / Monat:
2021-04
Volltext / DOI:
doi:10.5194/egusphere-egu21-8907
TUM Einrichtung:
Deutsches Geodätisches Forschungsinstitut (DGFI-TUM)
 BibTeX