Benutzer: Gast  Login
Titel:

Swarm Learning for decentralized and confidential clinical machine learning.

Dokumenttyp:
Journal Article; Research Support, Non-U.S. Gov't
Autor(en):
Warnat-Herresthal, Stefanie; Schultze, Hartmut; Shastry, Krishnaprasad Lingadahalli; Manamohan, Sathyanarayanan; Mukherjee, Saikat; Garg, Vishesh; Sarveswara, Ravi; Händler, Kristian; Pickkers, Peter; Aziz, N Ahmad; Ktena, Sofia; Tran, Florian; Bitzer, Michael; Ossowski, Stephan; Casadei, Nicolas; Herr, Christian; Petersheim, Daniel; Behrends, Uta; Kern, Fabian; Fehlmann, Tobias; Schommers, Philipp; Lehmann, Clara; Augustin, Max; Rybniker, Jan; Altmüller, Janine; Mishra, Neha; Bernardes, Joana P...     »
Abstract:
Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm...     »
Zeitschriftentitel:
Nature
Jahr:
2021
Band / Volume:
594
Heft / Issue:
7862
Seitenangaben Beitrag:
265-270
Volltext / DOI:
doi:10.1038/s41586-021-03583-3
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/34040261
Print-ISSN:
0028-0836
TUM Einrichtung:
1036; 1067; 611; Klinik und Poliklinik für Kinder- und Jugendmedizin
 BibTeX