User: Guest  Login
Less Searchfields
Simple search
Title:

Mutual Information-Based Disentangled Neural Networks for Classifying Unseen Categories in Different Domains: Application to Fetal Ultrasound Imaging.

Document type:
Journal Article; Research Support, Non-U.S. Gov't
Author(s):
Meng, Qingjie; Matthew, Jacqueline; Zimmer, Veronika A; Gomez, Alberto; Lloyd, David F A; Rueckert, Daniel; Kainz, Bernhard
Abstract:
Deep neural networks exhibit limited generalizability across images with different entangled domain features and categorical features. Learning generalizable features that can form universal categorical decision boundaries across domains is an interesting and difficult challenge. This problem occurs frequently in medical imaging applications when attempts are made to deploy and improve deep learning models across different image acquisition devices, across acquisition parameters or if some class...     »
Journal title abbreviation:
IEEE Trans Med Imaging
Year:
2021
Journal volume:
40
Journal issue:
2
Pages contribution:
722-734
Fulltext / DOI:
doi:10.1109/TMI.2020.3035424
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/33141662
Print-ISSN:
0278-0062
TUM Institution:
Institut für Medizinische Statistik und Epidemiologie
 BibTeX