PURPOSE: Stabilization of C1-2 using a Harms-Goel construct with 3.5 mm titanium (Ti) rods has been established as a standard of reference (SOR). A reduction in craniocervical deformities can indicate increased construct stiffness at C1-2. A reduction in C1-2 can result in C1-2 joint gapping. Therefore, the authors sought to study the biomechanical consequences of C1-2 gapping on construct stiffness using different instrumentations, including a novel 6-screw/3-rod (6S3R) construct, to compare the results to the SOR. We hypothesized that different instrument pattern will reveal significant differences in reduction in ROM among constructs tested.
METHODS: The range of motion (ROM) of instrumented C1-2 polyamide models was analyzed in a six-degree-of-freedom spine tester. The models were loaded with pure moments (2.0 Nm) in axial rotation (AR), flexion extension (FE), and lateral bending (LB). Comparisons of C1-2 construct stiffness among the constructs included variations in rod diameter (3.5 mm vs. 4.0 mm), rod material (Ti. vs. CoCr) and a cross-link (CLX). Construct stiffness was tested with C1-2 facets in contact (Contact Group) and in a 2 mm distracted position (Gapping Group). The ROM (°) was recorded and reported as a percentage of ROM (%ROM) normalized to the SOR. A difference > 30% between the SOR and the %ROM among the constructs was defined as significant.
RESULTS: Among all constructs, an increase in construct stiffness up to 50% was achieved with the addition of CLX, particularly with a 6S3R construct. These differences showed the greatest effect for the CLX in AR testing and for the 6S3R construct in FE and AR testing. Among all constructs, C1-2 gapping resulted in a significant loss of construct stiffness. A protective effect was shown for the CLX, particularly using a 6S3R construct in AR and FE testing. The selection of rod diameter (3.5 mm vs. 4.0 mm) and rod material (Ti vs. CoCr) did show a constant trend but did not yield significance.
CONCLUSION: This study is the first to show the loss of construct stiffness at C1-2 with gapping and increased restoration of stability using CLX and 6S3R constructs. In the correction of a craniocervical deformity, nuances in the surgical technique and advanced instrumentation may positively impact construct stability.
«
PURPOSE: Stabilization of C1-2 using a Harms-Goel construct with 3.5 mm titanium (Ti) rods has been established as a standard of reference (SOR). A reduction in craniocervical deformities can indicate increased construct stiffness at C1-2. A reduction in C1-2 can result in C1-2 joint gapping. Therefore, the authors sought to study the biomechanical consequences of C1-2 gapping on construct stiffness using different instrumentations, including a novel 6-screw/3-rod (6S3R) construct, to compare th...
»