Benutzer: Gast  Login
Titel:

Efficient Deep Network Architectures for Fast Chest X-Ray Tuberculosis Screening and Visualization.

Dokumenttyp:
Journal Article
Autor(en):
Pasa, F; Golkov, V; Pfeiffer, F; Cremers, D; Pfeiffer, D
Abstract:
Automated diagnosis of tuberculosis (TB) from chest X-Rays (CXR) has been tackled with either hand-crafted algorithms or machine learning approaches such as support vector machines (SVMs) and convolutional neural networks (CNNs). Most deep neural network applied to the task of tuberculosis diagnosis have been adapted from natural image classification. These models have a large number of parameters as well as high hardware requirements, which makes them prone to overfitting and harder to deploy i...     »
Zeitschriftentitel:
Sci Rep
Jahr:
2019
Band / Volume:
9
Heft / Issue:
1
Seitenangaben Beitrag:
6268
Volltext / DOI:
doi:10.1038/s41598-019-42557-4
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/31000728
Print-ISSN:
2045-2322
TUM Einrichtung:
Institut für Diagnostische und Interventionelle Radiologie
 BibTeX