Benutzer: Gast  Login
Titel:

Highly accurate classification of chest radiographic reports using a deep learning natural language model pre-trained on 3.8 million text reports.

Dokumenttyp:
Journal Article
Autor(en):
Bressem, Keno K; Adams, Lisa C; Gaudin, Robert A; Tröltzsch, Daniel; Hamm, Bernd; Makowski, Marcus R; Schüle, Chan-Yong; Vahldiek, Janis L; Niehues, Stefan M
Abstract:
MOTIVATION: The development of deep, bidirectional transformers such as Bidirectional Encoder Representations from Transformers (BERT) led to an outperformance of several Natural Language Processing (NLP) benchmarks. Especially in radiology, large amounts of free-text data are generated in daily clinical workflow. These report texts could be of particular use for the generation of labels in machine learning, especially for image classification. However, as report texts are mostly unstructured, a...     »
Zeitschriftentitel:
Bioinformatics
Jahr:
2021
Band / Volume:
36
Heft / Issue:
21
Seitenangaben Beitrag:
5255-5261
Volltext / DOI:
doi:10.1093/bioinformatics/btaa668
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/32702106
Print-ISSN:
1367-4803
TUM Einrichtung:
Institut für Diagnostische und Interventionelle Radiologie
 BibTeX