Machine learning (ML) is entering many areas of society, including medicine. This transformation has the potential to drastically change medicine and medical practice. These aspects become particularly clear when considering the different stages of oncologic patient care and the involved interdisciplinary and intermodality interactions. In recent publications, computers-in collaboration with humans or alone-have been outperforming humans regarding tumor identification, tumor classification, estimating prognoses, and evaluation of treatments. In addition, ML algorithms, e.g., artificial neural networks (ANNs), which constitute the drivers behind many of the latest achievements in ML, can deliver this level of performance in a reproducible, fast, and inexpensive manner. In the future, artificial intelligence applications will become an integral part of the medical profession and offer advantages for oncologic diagnostics and treatment.
«
Machine learning (ML) is entering many areas of society, including medicine. This transformation has the potential to drastically change medicine and medical practice. These aspects become particularly clear when considering the different stages of oncologic patient care and the involved interdisciplinary and intermodality interactions. In recent publications, computers-in collaboration with humans or alone-have been outperforming humans regarding tumor identification, tumor classification, esti...
»