User: Guest  Login
Less Searchfields
Simple search
Title:

Open-source Large Language Models can Generate Labels from Radiology Reports for Training Convolutional Neural Networks.

Document type:
Journal Article
Author(s):
Al Mohamad, Fares; Donle, Leonhard; Dorfner, Felix; Romanescu, Laura; Drechsler, Kristin; Wattjes, Mike P; Nawabi, Jawed; Makowski, Marcus R; Häntze, Hartmut; Adams, Lisa; Xu, Lina; Busch, Felix; Meddeb, Aymen; Bressem, Keno Kyrill
Abstract:
RATIONALE AND OBJECTIVES: Training Convolutional Neural Networks (CNN) requires large datasets with labeled data, which can be very labor-intensive to prepare. Radiology reports contain a lot of potentially useful information for such tasks. However, they are often unstructured and cannot be directly used for training. The recent progress in large language models (LLMs) might introduce a new useful tool in interpreting radiology reports. This study aims to explore the use of the LLM to classify...     »
Journal title abbreviation:
Acad Radiol
Year:
2025
Fulltext / DOI:
doi:10.1016/j.acra.2024.12.028
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/39765434
Print-ISSN:
1076-6332
TUM Institution:
Institut für Diagnostische und Interventionelle Radiologie (Prof. Makowski)
 BibTeX