Mitochondrial diseases present a diagnostic challenge due to their clinical and genetic heterogeneity. Achieving comprehensive molecular diagnosis via a conventional candidate-gene approach is likely, therefore, to be labour- and cost-intensive given the expanding number of mitochondrial disease genes. The advent of whole exome sequencing (WES) and whole genome sequencing (WGS) hold the potential of higher diagnostic yields due to the universality and unbiased nature of the methods. However, these approaches are subject to the escalating challenge of variant interpretation. Thus, integration of functional 'multi-omics' data, such as transcriptomics, is emerging as a powerful complementary tool in the diagnosis of mitochondrial disease patients for whom extensive prior analysis of DNA sequencing has failed to return a genetic diagnosis.
«
Mitochondrial diseases present a diagnostic challenge due to their clinical and genetic heterogeneity. Achieving comprehensive molecular diagnosis via a conventional candidate-gene approach is likely, therefore, to be labour- and cost-intensive given the expanding number of mitochondrial disease genes. The advent of whole exome sequencing (WES) and whole genome sequencing (WGS) hold the potential of higher diagnostic yields due to the universality and unbiased nature of the methods. However, the...
»