User: Guest  Login
Title:

Privacy-enhancing ETL-processes for biomedical data.

Document type:
Journal Article; Research Support, Non-U.S. Gov't
Author(s):
Prasser, Fabian; Spengler, Helmut; Bild, Raffael; Eicher, Johanna; Kuhn, Klaus A
Abstract:
BACKGROUND: Modern data-driven approaches to medical research require patient-level information at comprehensive depth and breadth. To create the required big datasets, information from disparate sources can be integrated into clinical and translational warehouses. This is typically implemented with Extract, Transform, Load (ETL) processes, which access, harmonize and upload data into the analytics platform. OBJECTIVE: Privacy-protection needs careful consideration when data is pooled or re-used...     »
Journal title abbreviation:
Int J Med Inform
Year:
2019
Journal volume:
126
Pages contribution:
72-81
Fulltext / DOI:
doi:10.1016/j.ijmedinf.2019.03.006
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/31029266
Print-ISSN:
1386-5056
TUM Institution:
Institut für Medizinische Statistik und Epidemiologie
 BibTeX