Benutzer: Gast  Login
Titel:

Privacy-enhancing ETL-processes for biomedical data.

Dokumenttyp:
Journal Article; Research Support, Non-U.S. Gov't
Autor(en):
Prasser, Fabian; Spengler, Helmut; Bild, Raffael; Eicher, Johanna; Kuhn, Klaus A
Abstract:
BACKGROUND: Modern data-driven approaches to medical research require patient-level information at comprehensive depth and breadth. To create the required big datasets, information from disparate sources can be integrated into clinical and translational warehouses. This is typically implemented with Extract, Transform, Load (ETL) processes, which access, harmonize and upload data into the analytics platform. OBJECTIVE: Privacy-protection needs careful consideration when data is pooled or re-used...     »
Zeitschriftentitel:
Int J Med Inform
Jahr:
2019
Band / Volume:
126
Seitenangaben Beitrag:
72-81
Volltext / DOI:
doi:10.1016/j.ijmedinf.2019.03.006
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/31029266
Print-ISSN:
1386-5056
TUM Einrichtung:
Institut für Medizinische Statistik und Epidemiologie
 BibTeX