Benutzer: Gast  Login
Titel:

[VOTE versus ACLTE: comparison of two snoring noise classifications using machine learning methods].

Dokumenttyp:
Journal Article
Autor(en):
Janott, C; Schmitt, M; Heiser, C; Hohenhorst, W; Herzog, M; Carrasco Llatas, M; Hemmert, W; Schuller, B
Abstract:
BACKGROUND: Acoustic snoring sound analysis is a noninvasive method for diagnosis of the mechanical mechanisms causing snoring that can be performed during natural sleep. The objective of this work is development and evaluation of classification schemes for snoring sounds that can provide meaningful diagnostic support. MATERIALS AND METHODS: Based on two annotated snoring noise databases with different classifications (s-VOTE with four classes versus ACLTE with five classes), identically structu...     »
Zeitschriftentitel:
HNO
Jahr:
2019
Band / Volume:
67
Heft / Issue:
9
Seitenangaben Beitrag:
670-678
Volltext / DOI:
doi:10.1007/s00106-019-0696-5
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/31190193
Print-ISSN:
0017-6192
TUM Einrichtung:
Hals-Nasen-Ohrenklinik und Poliklinik
 BibTeX