Diluted magnetic semiconductors have received much attention due to their potential applications for spintronics devices. A prototypical system (Ga,Mn)As has been widely studied since the 1990s. The simultaneous spin and charge doping via hetero-valent (Ga3+,Mn2+) substitution, however, resulted in severely limited solubility without availability of bulk specimens. Here we report the synthesis of a new diluted magnetic semiconductor (Ba1-xKx)(Zn1-yMny)2As2, which is isostructural to the 122 iron-based superconductors with the tetragonal ThCr2Si2 (122) structure. Holes are doped via (Ba2+, K1+) replacements, while spins via isovalent (Zn2+,Mn2+) substitutions. Bulk samples with x=0.1-0.3 and y=0.05-0.15 exhibit ferromagnetic order with TC up to 180 K, which is comparable to the highest TC for (Ga,Mn)As and significantly enhanced from TC up to 50 K of the `111'-based Li(Zn,Mn)As. Moreover, ferromagnetic (Ba,K)(Zn,Mn)2As2 shares the same 122 crystal structure with semiconducting BaZn2As2, antiferromagnetic BaMn2As2 and superconducting (Ba,K)Fe2As2, which makes them promising for the development of multilayer functional devices.
«
Diluted magnetic semiconductors have received much attention due to their potential applications for spintronics devices. A prototypical system (Ga,Mn)As has been widely studied since the 1990s. The simultaneous spin and charge doping via hetero-valent (Ga3+,Mn2+) substitution, however, resulted in severely limited solubility without availability of bulk specimens. Here we report the synthesis of a new diluted magnetic semiconductor (Ba1-xKx)(Zn1-yMny)2As2, which is isostructural to the 122 iron...
»