Benutzer: Gast  Login
Titel:

Efficient Bayesian inference for stochastic time-varying copula models

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Almeida, C. and Czado, C.
Abstract:
There is strong empirical evidence that dependence in multivariate financial time series varies over time. To incorporate this effect we suggest a time varying copula class, which allows for stochastic autoregressive (SCAR) copula time dependence. For this we introduce latent variables which are analytically related to Kendall’s τ , specifically we introduce latent variables that are the Fisher transformation of Kendall’s τ allowing for easy comparison of different copula families such as...     »
Stichworte:
time varying dependence, non Gaussian copulas, Kendall’s ¿ , Bayesian inference, Markov Chain Monte Carlo
Zeitschriftentitel:
Computational Statistics and Data Analysis
Jahr:
2012
Band / Volume:
56
Jahr / Monat:
2012-06
Heft / Issue:
6
Seitenangaben Beitrag:
1511–1527
Reviewed:
ja
Sprache:
en
Volltext / DOI:
doi:http://dx.doi.org/10.1016/j.csda.2011.08.015
WWW:
http://www.sciencedirect.com/science/article/pii/S0167947311003148
Status:
Verlagsversion / published
Semester:
SS 10
TUM Einrichtung:
Lehrstuhl für Mathematische Statistik
Format:
Text
 BibTeX