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Abstract

There is strong empirical evidence that dependence in multivariate financial
time series varies over time. To incorporate this effect we suggest a time vary-
ing copula class, which allows for stochastic autoregressive (SCAR) copula
time dependence. For this we introduce latent variables which are analyt-
ically related to Kendall’s τ , specifically we introduce latent variables that
are the Fisher transformation of Kendall’s τ allowing for easy comparison
of different copula families such as the Gaussian, Clayton and Gumbel cop-
ula. The inclusion of latent variables renders maximum likelihood estimation
computationally infeasible, therefore a Bayesian approach is followed. Such
an approach also enables credibility intervals to be easily computed in ad-
dition to point estimates. We design two sampling approaches in a Markov
Chain Monte Carlo (MCMC) framework. The first is a näıve approach based
on Metropolis-Hastings in Gibbs while the second is a more efficient coarse
grid sampler using ideas of Liu and Sabatti (2000). The performance of these
samplers are investigated in a large simulation study and are applied to two
data sets involving financial stock indices. It is shown that time varying de-
pendence is present for these data sets and can be quantified by estimating
time varying Kendall’s τ with point-wise credible intervals over the series.
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1. Introduction

Since the introduction of copulas by Sklar (1959) as tool for constructing
multivariate distributions they have become and its increasingly popular in a
variety of fields (see for example the books by Joe (1997) and Nelsen (2006)).
One such field is finance, where they are used to determine Value-at-Risk of
portfolios, to construct optimal portfolios and for pricing financial products
with several underlying assets. The book by Cherubini, Luciano, and Vec-
chiato (2004) is dedicated to various applications of copulas to finance.

Copulas also play an important role in multivariate GARCH models (see
Bauwens, Laurent, and Rombouts (2006) for a survey of such models) suit-
able for modeling financial time series. Initially such models allowed only
for time constant dependencies, however empirical work shows that this as-
sumption is not suitable for many data sets; see for example Erb, Harvey,
and Viskanta (1994), Longin and Solnik (1995) and Engle (2002). This in-
sight started a strong interest in copula based models, which allow for time
varying dependence parameters. Dias and Embrechts (2004) and Manner
and Candelon (2007) use a change point approach to identify a change in
copula dependence, while Giacomini, Härdle, and Spokoiny (2009) use to the
local change point (LCP) method of Mercurio and Spokoiny (2004).

A recent survey of time varying copula models is given by Manner and
Reznikova (2009). Early time-varying dependence models are the DCC mod-
els proposed by Tse and Tsui (2002) and Engle (2002), which model condi-
tional correlations. They are observation driven and require special efforts
to achieve a positive definite correlation matrix. As noted by Bauwens, Lau-
rent, and Rombouts (2006) a drawback of these DCC models is that the
parameters needed to model time dependencies are scalar and thus imply
that the conditional correlations between pairs of variables obey the same
nonstochastic dynamics. Additionally, since these models are correlation
based they incorporate only dependencies allowed by elliptical distributions.

More general are copula-GARCH models which were suggested by Patton
(2006) and Jondeau and Rockinger (2006). These models assume GARCH
margins, while the dependence is modelled by a copula. Estimation is usually
earned out in a two step approach, since a joint estimation of all parameters
is too costly. First the marginal parameters are estimated and then these
estimates are used to transform the standardized innovations via the prob-
ability integral transform to copula data. Finally this derived copula data
is used to estimate the copula parameters. Joe (2005) and Patton (2006)
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have shown that this leads to consistent, but not efficient estimators, when
maximum likelihood (ML) estimators are used at the two estimation steps.
Consistency is also achieved if one uses normalized ranks of the standardized
marginal innovations to transform to copula data. Liu and Luger (2009) have
proposed an algorithm to improve the efficiency in copula-GARCH models
when ML estimation is used. Subsequent time-varying copula-GARCH mod-
els have been proposed by Jondeau and Rockinger (2006) and Patton (2006).

As an alternative to GARCH models, stochastic volatility (SV) models
(see for example Taylor (1986)) can be used as marginal models together
with a copula to construct multivariate financial time series models. Multi-
variate generalizations of the SV are proposed by Harvey, Ruiz, and Shep-
hard (1994) while Yu and Meyer (2006) consider a bivariate SV model with
time dependent stochastic correlations assuming multivariate normal or t
errors. Assuming marginal SV models together with an arbitrary bivariate
copula family has been considered by Hafner and Manner (2008). They allow
for time-varying stochastic copula parameters by choosing a transformation
from the parameter space of the copula parameter to the real numbers and
assuming a Gaussian AR(1) model for the transformed copula parameter.
Estimation is facilitated by using efficient importance sampling (Liesenfeld
and Richard (2003) and Richard and Zhang (2007)), however standard error
estimates are difficult to compute.

In a Bayesian approach using Markov Chain Monte Carlo (MCMC) algo-
rithms precision, estimates are easy to obtain, since samples of the posterior
are available to construct credible intervals. The advantage of the Bayesian
approach has been recognized in this context by Yu and Meyer (2006) and
Ausin and Lopes (2009). However it is vital to construct and implement
MCMC algorithms that are fast and mix well. Yu and Meyer (2006) use
WINBUGS, which utilizes individual Gibbs sampling for each component of
the parameter vector to be estimated. They contend that this might not be
an efficient way of sampling from the posterior. In contrast Ausin and Lopes
(2009) considers a copula-GARCH model with the nonstochastic dependence
dynamics chosen as in Tse and Tsui (2002). This restricts the class of copulas
considered to the class of elliptical copulas. Ausin and Lopes (2009) estimate
marginal and copula parameters jointly. They use joint multivariate random
walk Metropolis-Hastings (MH) updates for the dynamic copula parameters
and the GARCH parameters of each margins, respectively. They report that
individual random walk MH-updates result in slow mixing of the MCMC
samples. We like to note that the dynamics of the copula parameters con-
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sidered in Ausin and Lopes (2009) are nonstochastic and observation driven
Bayesian MCMC algorithms are much simpler.

The purpose of this paper is to develop efficient MCMC estimation al-
gorithms for stochastic time-varying copula models. As stochastic dynamics
we consider a Gaussian AR(1) model for the inverse Fisher transformation
of the Kendall’s τ parameter corresponding to the chosen copula. This is in
line with the model considered in Hafner and Manner (2008). Our approach
is valid for any copula specified by a single parameter, and we specifically
consider Gaussian, (double) Clayton and the (double) Gumbel copula. We
follow a latent variable approach based on the data augmentation principle of
Tanner and Wong (1987). A first näıve Gibbs sampling method for updating
the latent variables individually is developed. As expected this is not very
efficient and we improve the sampler by developing by a coarse grid sampler
as introduced by Liu and Sabatti (2000). The model is applied to two data
sets and interesting empirical results are uncovered.

The papers is organized as follows. In Section 2 we introduce the stochas-
tic dynamic copula model and choose appropriate priors. In Section 3 we
derive expressions for the full conditional densities which are needed for
a Metropolis-Hastings within Gibbs sampler. An appropriate coarse grid
method for updating the latent variables is developed. A large simulation
study to investigate the behaviour of the MCMC samplers is conducted in
Section 4. Two applications to financial stock indices are presented in Sec-
tion 5. Finally, concluding a summary and an outlook are given in Section 6.

2. Model

For the general setup we use the following notations. Let (y1, y2) ∈ R2 be
a bivariate random vector with marginal cumulative distribution functions
(cdf) Fi, i = 1, 2 and joint cdf H. Using Sklar’s theorem (Sklar (1959)), we
can express H as H(y1, y2) = C(F1(y1), F2(y2)), where C is a copula cdf.
For absolutely continuous distributions this can be rewritten for densities as
h(y1, y2) = c(F1(y1), F2(y2))f1(F1(y1))f2(F2(y2)), where c is the correspond-
ing copula density.

In financial applications knowledge of the past is collected in the filtration
Ft−1 and we observe time series data (y1,t, y2,t) for t = 1, · · · , T . Patton
(2006) models the conditional joint distribution of (y1,t, y2,t) given Ft−1 as

Ht(y1,t, y2,t | Ft−1) = C(F1,t(y1,t | Zt−1,β1), F2,t(y2,t | Zt−1,β2) | Zt−1,α).
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Here Zt−1 is a set of variables in Ft−1, while βi, i = 1, 2 are parameters for
the marginal models and α for the dependence model, respectively. It follows
immediately that the log-likelihood (L) can be decomposed into the following
form:

L12(β1,β2,α) = L1(β1) + L2(β2) + LC(β1,β2,α)

which separates the contributions to the joint likelihood (L12) into marginal
contributions (Li, i = 1, 2) and the copula contribution (LC). This particular
form motivates a two stage estimator.

In the first stage the marginal parameters βi, i = 1, 2 are estimated by
maximizing over Li(βi) separately, giving β̂i. For the second stage the de-
pendence parameter α is found by maximizing LC(β1, β̂2,α). This approach
is called inference function for margins or IFM method. It was introduced
by Joe (1996) and who proved later in Joe (1997) the consistency of this
method.

Genest, Ghoudi, and Rivest (1995) proposes another two step estimator,
where the margins are transformed by ranks to copula data in the first stage.
This corresponds to an empirical probability transformation. In the second
stage only the dependence parameter α is estimated. This semi-parametric
method is also consistent and more robust so long as misspecification of mar-
gins is not severe (see Kim, Silvapulle, and Silvapulle (2007)). Consequently,
if the marginal models are carefully chosen to provide good marginal fitting,
we can concentrate on estimating the dependence model using the marginally
fitted parameters, or we could apply the empirical transformation if we are
unsure of the marginal models. Thus we concentrate on building a copula
model on [0, 1]2 which allows for time varying dependence.

Let ut = (ut1, ut2)
> ∈ [0, 1]2 : t = 1, . . . , T be a sample such a that:

ut | (u1, . . . , ut−1), (θ1, . . . , θt) ∼ Cθt
(·), (1)

where Cθt
(·) stands for a parametric copula distribution with time varying

parameter θt ∈ Θ ⊂ RM . The parameters θt will be modeled as latent
variables with the following dependence structure. The latent variable θt−1

influences directly only ut−1 and θt as shown in Figure 1.

—– Figure 1 about here—–

This time dependence structure implies the following conditional indepen-
dence conditions:
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1. The variables u1, . . . , uT are conditionally independent given the la-
tent variables θ1, . . . , θt−1. In the notation from Florens, Mouchart,
and Rolin (1990), this can be written as ⊥⊥

1≤t≤T
ut | θ1, . . . , θT , or equiv-

alently in densities:

p(u1, . . . , uT | θ1, . . . , θT ) =
T∏

t=1

p(ut | θ1, . . . , θT ) (2)

2. The present observation ut does not depend on the past latent vari-
ables θ1, . . . , θt−1 given the present value of the latent variable θt, i.e.
ut ⊥⊥ θ1, . . . , θt−1 | θt, in densities:

p(ut | θ1, . . . , θt) = p(ut | θt). (3)

Although the parametric bivariate copulas involved can be general, for
illustration purposes, we restrict to families governed by a single parameter,
i.e. M = 1, or equivalently the parameter space Θ ⊂ R.

The fact that different parametric copula families have different parame-
ter spaces, motivates us to transform these parameter spaces in a way that
different families can share the same domain. From the literature on copu-
las, e.g. Joe (1997), Nelsen (2006), or Genest and Favre (2007), a generally
accepted measure of dependence is the Kendall’s τ coefficient. We propose
to model the time dependence of pairs of variables by allowing a time vary-
ing Kendall’s τt for the copula Cθt

(·). For this note that most bivariate
copula families have a one-to-one transformation from the parameter space
Θ into the range of values for the corresponding Kendall’s τ . We denote by
τt := τ(θt) this relationship between the parameter specifying the copula and
the corresponding Kendall’s τt. Then we consider a one-to-one transforma-
tion from R into (−1, 1), the range of the Kendall’s τt values. We denote this
bijection as γt 7→ τt := h(γt). For the simulation study and applications we
utilise the inverse of the Fisher transformation as a bijection defined as:

τt =
exp(2γt)− 1

exp(2γt) + 1
=: h(γt).

Thus, the relationship between the latent variables γt and the time varying
parameters θt governing the bivariate copulas is given by the transformation:

θt ∈ Θ 7→ γt = h−1(τ(θt)) =
1

2
log

{
1 + τ(θt)

1− τ(θt)

}
∈ R. (4)

6



By assuming a time series model for γt, we also assume stochastic time
varying copula parameters θt, specifically, we assume γt follows a stationary
AR(1) model i.e.:

γt = µ + φ(γt−1 − µ) + σεt

εt ∼ N(0, 1), i.i.d. ∀ t.
(5)

Here N(µ, σ2) denotes a normal distribution with mean µ and variance σ2.
We have chosen to model the time varying dependence using time varying γt

which are analytically related to Kendall’s τt and not to the copula specific
parameters θt , as thus allows for easy comparison of different copula families.
In addition Kendall’s τ can easily be empirically estimated.

For this model the copula dependence parameter vector is therefore given
by α := (µ, φ, σ) ∈ R × [−1, 1] × R+. We call the model specified in (1)
and (5) a stochastic copula autoregressive (SCAR) model as proposed by
Hafner and Manner (2008). We use the abbreviation SCAR(µ, φ, σ) in the
subsequent text.

Likelihood. In the following we use the notation: x1:N := (x1, . . . , xN)>.
To specify the likelihood, we apply the following conditional independence
conditions:

(a) ⊥⊥
1≤t≤T

ut | γ1:T

(b) u1:T ⊥⊥ α | γ1:T

(c) ut ⊥⊥ γ1:T ,α | γt

(d) γt ⊥⊥ γ1:(t−1) | γt−1,α.

(6)

The conditions (a), (b) and (c) in equation (6) formalise the idea that the
dependence across time is given only through the latent variables as shown
in Figure 1. The condition (d) specifies the time dependence by using the
Markov property of the underlying AR(1) model.

Therefore the joint likelihood of the observations u1:T and the latent
variables γ1:T is given by:

p(u1:T ,γ1:T | α) =
∏

1≤t≤T

p(ut | γt) · p(γ1 | α)
∏

2≤t≤T

p(γt | γt−1, α), (7)

where p(ut | γt) is specified by the underlying copula cθt(ut) with parameter
θt specified in (4). More precisely for ut = (ut1, ut2)

> we have:

p(ut | γt) = cθt(ut1, ut2), where θt = τ−1(h(γt)). (8)
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Prior specifications. For the priors of the copula dependence parameters
α = (µ, φ, σ)> we use standard priors of AR(1) models (see e.g. Chib and
Greenberg (1994)).

(a) σ2 ∼ IG(a, b)

(b) µ | σ ∼ N(µ0, κ σ2)

(c) φ | σ, µ ∼ U(−1, 1),

(9)

where a, b, µ0 and κ are fixed hyper-parameters. Here IG(a, b) denotes the

inverse Gamma distribution with density p(σ2) = ba

Γ(a)

(
1
σ2

)a+1
exp

(− b
σ2

)
and

U(−1, 1) denotes the uniform distribution on (−1, 1).
In the next section we show that this prior specification can be used

to develop usable expressions for the conditional densities in order to con-
struct a Metropolis-Hastings within Gibbs sampler. The values of the hyper-
parameters can be chosen to reflect prior information. A reference prior is
available by considering the limiting case when a → 0, b → 0, and κ → ∞
giving p(µ, φ, σ2) ∝ 1

σ
.

3. Posterior Inference

In this section Metropolis-Hastings within Gibbs samplers are developed
for the model parameters α and latent variables γ = (γ1, . . . , γT )> jointly.
One sampler consists of näıvely updating the latent variables γ individually,
while are more efficient estimator will be developed using ideas of Liu and
Sabatti (2000).

Updating latent variables γ. First we introduce some additional notation.
Let γA := (γt : t ∈ A) and γ\A := γAC . Similarly uA and u\A are defined,
respectively. From (6) it follows that γA ⊥⊥ u\A | uA,γ\A,α. Therefore we
have

p(γA | u1:T ,α, γ\A) = p(γA | uA,γ\A,α)

∝ p(uA,γA | γ\A,α)

= p(γA | γ\A,α) p(uA | γA,γ\A,α)

= p(γA | γ\A,α) p(uA | γA) (by (2) and (3))

(10)
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Thus in a multivariate Gibbs sampler scheme for updating γA by using
p(γA | u1:T ,α, γ\A), only the observations included in uA are involved. Con-
sequently some computations are simplified.

First a näıve method is described and this sampler is improved by a
coarse grid sampler, which takes into account some characteristics of the
autoregressive structure for the latent variables.

Näıve method. This update of the latent variables γ is based on the data
augmentation principle introduced in Tanner and Wong (1987) and used
for state space models in Carlin, Polson, and Stoffer (1992) or Geweke and
Tanizaki (2001). The latent variables are treated as unknown parameters
and therefore simulated from the posterior distribution. The full conditional
distributions can be derived as follows.

From (10) it follows for A = {t} that

p(γt | u1:T , γ\t,α) ∝ p(γt | γ\t, α) p(ut | γt). (11)

The Gaussian AR(1) specification for γt, given in (5), implies:

γt | γ\t,α ∼ N(γ∗t , σ
∗
t
2), (12)

where

γ∗1 := µ + φ(γ2 − µ); σ∗1
2 := σ2

γ∗t := µ +
φ

1 + φ2
(γt+1 + γt−1 − 2µ); σ∗t

2 :=
σ2

1 + φ2
, for t = 2, . . . , T − 1

γ∗T := µ + φ(γT−1 − µ); σ∗T
2 := σ2.

Thus, in order to update γt given u1:T , γ\t,α, we perform a Metropolis-

Hasting (MH) step for γt with proposal density N(γ∗t , σ
∗
t
2) and MH-ratio

given by: min

{
p(ut | γ̃t)

p(ut | γt)
, 1

}
, where γ̃t is the proposal value and γt the

current value. For more details see the Algorithm 1 in Appendix A.
In spite of its generality and easy implementation, this updating proce-

dure has an important drawback. It shows poor convergence and mixing.
One of the potential reason for this could be that the proposal density is far
from the posterior one. Improvements will depend on the functional form of
the selected copula family. For example Geweke and Tanizaki (2001) suggest
different proposal densities for state-space models, which depend on approx-
imations of posterior densities or at least on approximations of the first and
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second moments. However, we will follow a different way of improving the
mixing of the MCMC algorithm. In the näıve method, the latent variables
are updated individually, which does not take into account the autoregres-
sive structure of the latent variables. Therefore we suggest to propagate the
updating step into neighbourhoods as a potential improvement.

Coarse grid method. The basis of this method can be found in Liu and Sabatti
(2000). This generalises the näıve method by taking into account the au-
toregressive structure of the model. In general this method requires more
computational effort, but the behaviour of the simulated Markov chain is
improved significantly.

The general idea of the coarse grid method is to find a group of random
transformations which leaves distribution such as the posterior or the full
conditional distribution invariant. These random transformations are then
applied to the näıve sampler, which has then the potential to improve the
mixing of the chain. In our case we consider for each t = 1, . . . , T the
following group of transformations:

Γt := {gt : gt(γ1:T ) = γ1:T + λt bt}, (13)

where bt ∈ RT is fixed, and λt ∈ R. Even though bt can be chosen arbitrary,
a convenient choice incorporates some characteristics of the Markovian struc-
ture. Motivated by the state-space model example in Liu and Sabatti (2000)
we use:

b1 = (1,
φ

1 + φ2
, 0, . . . , 0)>

b2 = (φ`, 1,
φ

1 + φ2
, 0, . . . , 0)>

bt = (0, . . . , 0,
φ

1 + φ2
, 1,

φ

1 + φ2
, 0, . . . , 0)> for t = 3, . . . , T − 2

bT−1 = (0, . . . , 0,
φ

1 + φ2
, 1, φ`)

>

bT = (0, . . . , 0,
φ

1 + φ2
, 1)>,

(14)

which corresponds to transform (γt−1, γt, γt+1) into (γt−1+ φ λt

1+φ2 , γt+λt, γt+1+
φ λt

1+φ2 ), for t = 3, . . . , T − 2.
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The group of transformations given in (13) and (14) satisfies the condi-
tion of Theorem 1 in Liu and Sabatti (2000). Therefore the density p(λt |
u1:T ,γ1:T ,α) of the random transformation λt which leaves the conditional
distribution p(γ1:T | u1:T ,α) invariant is proportional to

p(λt | u1:T ,γ1:T , α) ∝ p(gt(γ1:T ) | u1:T ,α) · |Jgt(γ1:T )| · Lt(dλt), (15)

where Jgt(γ1:T ) is the Jacobian matrix of the transformation and Lt is the
left Haar invariant measure associated to the group of transformations Γt. Is
easy to verify that |Jλt(γ1:T )| = 1 and that Lt is the Lebesgue measure.

Denoting by RT ∈ RT×T the matrix with (i, j)-th element given by
φ|i−j|, 1 ≤ i, j ≤ T , it follows from the AR(1) specification of the latent
variables γt, in (5) that

γ1:T | α ∼ NT

(
1T µ,

σ2

1− φ2
RT

)
, (16)

which implies that

p(γ1:T | α) ∝ exp

{
−1− φ2

2 σ2
(γ1:T − 1T µ)> R−1

T (γ1:T − 1T µ)

}
. (17)

From the general model specification, by applying Bayes’ Theorem and by
simplifying using the equations (2) and (3), we note that

p(γ1:T | α,u1:T ) ∝ p(u1:T | γ1:T , α) p(γ1:T | α)

= p(u1:T | γ1:T ) p(γ1:T | α).

This yields

p(gt(γ1:T )|α,u1:T ) ∝ exp
{
−1−φ2

2 σ2
(γ1:T + λt bt − 1T µ)>R−1

T (γ1:T + λt bt − 1T µ)
}

· p(u1:T | gt(γ1:T )). (18)
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Using (15) it follows that

p(λt | γ1:T , u1:T ,α`) ∝ exp
{
−1− φ2

2 σ2
(γ1:T + λt bt − 1T µ)>R−1

T (γ1:T + λt bt − 1T µ)
}

· p(u1:T | gt(γ1:T ))

= exp
{
−1− φ2

2 σ2
(λ2

t b>t R−1
T bt + 2 (γ1:T − 1T µ)>R−1

T bt λt

}

· p(u1:T | gt(γ1:T ))

∝ exp



−

(1− φ2) b>t R−1
T bt

2 σ2

(
λt +

(γ1:T − 1T µ)>R−1
T bt

b>t R−1
T bt

)2




· p(u1:T | gt(γ1:T ))

= exp
{
− 1

2 V ∗
t

2 (λt − λ∗t )
2

}
· p(u1:T | gt(γ1:T )) (19)

with

λ∗t := −(γ1:T − 1T µ)> R−1
T bt

b>t R−1
T bt

and V ∗
t

2 :=
σ2

(1− φ2) b>t R−1
t bt

. (20)

Now, by applying equation (19), we can show that, for all a ∈ R p(λt |
γ1:T ,u1:T ,α) = p(λt+a | γ1:T −a1T ,u1:T ,α). holds. This corresponds to the
transformation-invariant property (1) of Liu and Sabatti (2000). Therefore
we can apply Theorem 2 of Liu and Sabatti (2000) and use MH steps for
updating the latent variables. Therefore, we choose λt deriving from a MH
step with proposal distribution N(λ∗t , V

∗
t

2) and MH-ratio

min

{
p(uAt | γAt

+ λtbAt)

p(uAt | γAt
)

, 1

}
, (21)

where At = {j ∈ {1, . . . , T} : bt,j 6= 0 } and bt,j is the jth component of bt.
In summary, the complete coarse grid update proceeds as follows:

• For current values of α update γ1:T using the näıve method.

• For t = 1, . . . , T , simulate a λt by using an MH step as described,
compute gt(γ1:T ) = γ1:T + λt bt and use them as new values for γ1:T .

Note that the MH-ratio in (21) can be computed quickly due to the large
number or zeroes in bt. More details are given in the Algorithm 2 in Appendix
A. In Appendix B we give simple equations for computing λ∗t and V ∗

t
2.
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Updating model parameters α of the latent variables. The conditional inde-
pendence condition (6b) implies that once the latent variables are updated,
the new values for the parameters µ, φ, σ depend only on the current values
of the latent variables γ1:T and not on the observed values u1:T , i.e.

p(µ, φ, σ | γ1:T ,u1:T ) = p(µ, φ, σ | γ1:T ). (22)

Now, the appropriate conditional distributions for the Gibbs sampler are as
follows:
For µ and σ: from (22) and the prior specification (9),

p(µ, σ2 | u1:T ,γ1:T , φ) = p(µ, σ2 | γ`,1:T , φ)

∝ p(γ1:T | µ, φ, σ) p(µ, σ)

∝ p(µ, σ2)

(
1

σ2

)T
2

exp

{
− A

2σ2

(
µ− m1

A

)2
}

· exp

{
− 1

2σ2

(
m2 − m2

1

A

)}
,

where A := 1−φ2+(T−1)(1−φ)2, m1 := (1−φ2)γt+(1−φ)
T∑

t=2

(γ`,t−φγt−1)

and m2 := (1− φ2)γ2
t +

T∑
t=2

(γt − φγt−1)
2. Therefore integrating over µ, and

using the prior specification (9) results in

p(σ2 | γ1:T , φ) ∝
(

1

σ2

)T−1
2

+a`+1

exp

{
−B + b

σ2

}
,

with B :=
1

2

(
m2 − m2

1

A

)
. Here a and b are the hyper-parameters of the

prior specification. This can be further identified as

σ2 | γ1:T , φ ∼ IG

(
T − 1

2
+ a,B + b

)
. (23)

Now, for the conditional distribution of µ, note that

p(µ | γ1:T , φ, σ2) ∝ p(µ | σ2) exp

{
− A

2σ2

(
µ− m1

A

)2
}

(24)
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by using the prior specification (9). Easy calculation shows that

µ | γ1:T , φ, σ2 ∼ N(µ̃∗, σ̃∗ 2
µ ), (25)

where µ̃∗ =
κm1 + µ∗

1 + κA
and σ̃∗ 2

µ = σ2

(
κ

1 + κA

)
.

If a→ 0, b→ 0, and κ→∞, i.e. when non informative priors are used,
the conditional distribution simplifies to

σ2 | γ1:T , φ ∼ IG

(
T − 1

2
, B

)
and µ | γ1:T , φ, σ2 ∼ N

(
m1

A
,
σ2

A

)
.

For φ we have that

p(φ | γ1:T , µ`) ∝ ϕµ, 1
1−φ2

(γ1) · ϕS1
S0

, 1
S0

(φ) · 1[−1,1](φ`), (26)

where S0 =
T∑

t=2

(γt−µ)2, and S1 =
T∑

t=2

(γt−µ)(γt−1−µ). Here ϕµ,σ2 denotes

the N(µ, σ2) density.
Therefore, with the specified prior, i.e. p(φ) ∝ 1, we use an MH-step

with a N
(

S1

S0
, 1

S0

)
distribution truncated to [−1, 1] as proposal distribution.

Since the proposal distribution is close to the posterior one, the acceptance
rate is high. Moreover the acceptance rates approach one when the sample
size grows since correction is only needed for the initial state. Algorithm 3
in Appendix A gives a summary for updating the latent model parameters.

4. Simulation Study

We investigate in the following the behaviour of the two MCMC samplers
developed in Section 3 for a Gaussian, double Clayton and double Gumbel
copula with different stochastic time-varying copula dependency.

Gaussian copula. A first set of scenarios for the simulation involves Gaussian
SCAR copula models. The sample size was fixed to T = 1 000, and the
simulated Markov chains consist of 100 000 iterations using the näıve (N)
and coarse grid (CG) sampler, respectively. For a graphical check of the
behaviour of the generated Markov chain using the CG sampler, some plots
are presented for a single simulated data set in Figure 2.
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—–Figure 2 about here—–

Figure 2 illustrates the convergence of the CG sampler for the copula
dependence parameters α. The true values are reasonably close to the max-
imum a posteriori (MAP) estimates. The MCMC traces seem stationarity
and the estimated autocorrelation function decreases quickly for µ and φ and
reasonably for σ. For the posterior analysis we take every 50th iterations to
have low autocorrelations for all parameters.

Additionally, since the latent variables are treated as unknown parame-
ters, credibility intervals can be computed for them. For many parametric
copula families, an analytic one-to-one relationship between Kendall’s τ and
the copula parameter is known. Therefore we can construct credible intervals
for the time varying Kendall’s τt. The 90% point-wise credible intervals for τt

for the last 200 observations for a simulated data set are presented in Figure 3,
demonstrating that the true τt values (dotted line) is well covered. Further
we see wider credible intervals for lower values of τt compared to higher val-
ues. This is due to the fact that an observation (u1t, u2t) where u1t ≈ u2t can
be associated with high dependence but also with low dependence, while an
observation where u1t ¿ u2t or u1t À u2t can only be associated with lower
dependence. Thus low values of the Kendall’τ , i.e. lower dependence, are
less precisely estimated. Additionally we see that the credible intervals are
non symmetric, reflecting nonsymmetric posterior distributions of τt.

—–Figure 3 about here—–

In order to check the validity of the näıve (N) and the coarse grid (CG)
sampler, as well as the improved efficiency of the CG sampler over the N
sampler, we simulate 100 data sets for several parameter configurations. A
summary of the behaviour for the two samplers is presented in Table 1.

—–Table 1 about here—–

In addition to estimated posterior quantiles, posterior mean and mode,
averaged over the 100 simulation we also report the average effective sam-
ple size (EFS) for the two samplers and its ratio. The EFS for R MCMC
iterations is the number of i.i.d. samples necessary to achieve the accuracy
achieved by the R MCMC iterations. More precisely the variance of the
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posterior mean estimate θ̄ for the parameter θ by using R MCMC iterations
θ(r)) is given by:

Var(θ̄) =
Var(θ(r))

R
+

1

R2

∑

r 6=s

Cov(θ(r), θ(s)). (27)

The first term on the right side of equation (27) can be interpreted as the
variance of θ̄ if the sample is i.i.d. Therefore, the effective sample size is
defined such that

EFS :=
Var(θ(r))

Var(θ̄)
=

R

1 +
1

R

∑

r 6=s

Cor(θ(r), θ(s))
.

From the posterior summaries we see that both samplers are estimating
the true parameters quite well over all parameter combinations. As expected
the effective sample size is quite low for φ and σ. However the CG sampler
is always more efficient than the N sampler. The improvement is larger for
strong dependencies (high φ) than for small dependencies (low φ). In the
cases of large φ an improvement of about 40% is observed.

Clayton copula. A second example involves a mixture of Clayton copulas,
hereafter called double Clayton. The definition of a double Clayton is as
follows: Denoting by C(θ) a Clayton copula with parameter θ ∈ [0,∞), A
random vector (U, V ) ∈ [0, 1]2 is distributed as a double Clayton DC(θ) with
θ ∈ R if (U, V ) is distributed as a Clayton C(θ) for θ ≥ 0 and (U, 1 − V ) is
distributed as a Clayton C(−θ) for θ < 0. This copula can also be viewed
as a rotated copula by 90 degrees. This idea can be applied to other copula
families such as the Gumbel copula and further examples can be found in
Joe (1997).

The motivation for using these copulas rather than a simple Clayton or
Gumbel is to avoid problems when negative dependence occurs. This situ-
ation could happen if φ is negatively estimated for some MCMC iterations.
From a practical point of view, if negative dependence is not present in the
data, we will expected at most a few negative φ iterations. The advantage of
this formulation is that it permits us to use the same sampling algorithms.
Therefore we can compare for example a Gaussian SCAR copula model to
a Clayton or Gumbel ones without having to consider the sign of the de-
pendence. Figure 4 gives density contours for a bivariate double Clayton
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distribution with standard normal margins (top row) and a double Gumbel
distribution with standard normal margins (bottom row), respectively.

—–Figure 4 about here—–

We now present a similar table of the simulation results for the posterior
estimation for double Clayton SCAR copula models as in the Gaussian case.

—–Table 2 about here—–

Table 2 shows similar good behaviour of the posterior mean and MAP
estimates for the both samplers. The EFS are similar than in the Gaussian
SCAR case.

Gumbel Example. For the same setup of the parameters as in the Gaussian
and in the Clayton examples, the behaviour is similar (not shown). Further,
we want to here explore a different scenario where the Kendall’s τt varies with
a high frequency; therefore, we propose scenarios where the autocorrelation
parameter (φ) is negative. The results of this simulation setup of double
Gumbel SCAR models are in presented in Table 3.

—–Table 3 about here—–

It shows good behaviour of the posterior mean and MAP estimates for the
both samplers. The EFS are lower than in the Gaussian and in the Clayton
SCAR cases and the improvement of the CG sampler over the N sampler
is not so pronounced, but still visible with improvements of 18%-57% for
almost all parameters.

Overall we showed that both samplers are accurate and stable for Gaus-
sian, double Clayton and double Gumbel SCAR copulas for different param-
eter configurations. There is an efficiency gain for using the CG sampler over
the N sampler. This gain is higher for low frequency Kendall’s τ variation
i.e. the autocorrelation (φ) is positive.

We like to mention that a fast implementation is available. More precisely,
100 000 iteration for a bivariate time series of size 1 00 takes about 15 minutes
on a Intel Core Duo T7500 running in 2.2GHz, and using only one processor.
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5. Empirical Applications

In order to see how the proposed estimator works with a real data set,
we consider two bivariate financial time series. The first one is the data set
used in Engle (2002), i.e. the log returns of the Industrial Dow Jones (DJI)
and the NASDAQ from March 23th, 1990 to March 26th, 2000. The second
data set comes from the Standard & Poors 500 (S&P500) and the Deutscher
Aktien IndeX (DAX) from June 6th, 2002 until November 6th, 2009.

First we estimate two separate univariate GARCH(1,1) models with Gaus-
sian innovations (see e.g. Bollerslev (1986)) for each margin to account for
marginal time dependence. A summary of the marginal estimates is re-
ported in Table 4. The standarized residuals behave like an i.i.d. standard
normal sample and as such, we believe marginal time dependence has been
sufficiently removed. Copula data was derived using the probability integral
transformation. We leave out the two last years in order to evaluate the fore-
casting performance of several SCAR copula models using the CG sampler
for prediction.

—–Table 4 about here—–

The estimated posterior quantiles, mean and mode for the time varying
copula parameters using Gaussian, Clayton and Gumbel SCAR models are
presented in Table 5. Here a CG sampler was run using 100 000 MCMC
iterations, we found a burnin of 5 000 iterations and a subsampling of every
50th iteration sufficient, yielding 1 900 recorded MCMC iterations.

—–Table 5 about here—–

We see that the persistence of the “dependence shocks” (size of φ) varies
with the SCAR copula model as well as for the data set considered. For the
DOW Jones-NASDAQ data the Clayton (Gaussian) SCAR copula model has
the lowest (highest) φ, while for the S&P500-DAX data the Clayton (Gum-
bel) SCAR copula model has the lowest (highest) one. From the estimation
of µ, we observe higher mean time dependence between DOW Jones NAS-
DAQ data compared with S&P500-DAX data. This might be explained by
the fact that both DOW Jones and NASDAQ are indices from the same stock
exchange market, namely the New York Stock Exchange, while this is not
the case for the S&P500 and DAX indices. As noted we observe that the
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“dependence shocks” decay slower in DOW Jones-NASDAQ data compared
to the S&P500 - DAX data. This difference might follow again from the
markets where these indices are traded.

To assess which of the SCAR copula models is the most appropriate
one we compare sum of squared distances between the corresponding SCAR
Kendall’s τt estimates and rolling window Kendall’s τt estimates. Here the
rolling window estimates serve as empirical estimates and therefore we select
the SCAR model which provides the lowest sum of squared distances. The
corresponding sum of squared distances are given in Table 6 with the lowest
values per window size in bold numbers. We see that for the Dow Jones-
NASDAQ data the Gaussian SCAR model give the lowest for two window
sizes and is of lowest equal magnitude for a window size of 250. Using this
measure we would therefore choose a Gaussian SCAR copula model for this
data set. For the S&P500-DAX data the Gumbel SCAR model would be
chosen for a rolling window size of 50, while a Clayton SCAR model would be
more appropriate if one considers a window size of 125 or 250. Here we make
the choice of a window size of 50, since this does not provide oversmoothing
of the copula time dependence measure.

—–Table 6 about here—–

To assess in more detail the fit of the different SCAR specifications we now
compare the posterior mean of Kendall’s τt with the corresponding rolling
window estimates using window size 50 (see top row of Figure 6). This
confirms our model choice of a Gaussian SCAR model for the Dow Jones-
NASDAQ data and a Gumbel SCAR model for the S&P500-DAX data. In
the bottom panels of Figure 6 we show Kendall’s τt estimates for the chosen
models together with point wise 90% credible intervals and the rolling window
estimate with window size 50. They show that the posterior mean estimates
are close to the rolling window estimate. Further non overlapping credible
interval estimates at different time points show the need for time varying
copula dependence.

—–Figure 6 about here—–

Finally we consider the predictive capability of the chosen SCAR models
by forecasting Kendall’s τt. For this we simulate for the rth MCMC SCAR
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model parameter vector value corresponding latent variables γ
(r)
t for t ≥

T , which we then transform to the corresponding Kendall’s τt values. We
then use these values to construct corresponding posterior mean estimates
together with point-wise 90% credible estimates. The results are shown in
Figure 7. Both panels indicate the high predictive capability of the chosen
SCAR models for the two data sets, since the point-wise predictive intervals
cover the rolling window estimate

—–Figure 7 about here—–

6. Summary and outlook

In this paper we considered SCAR copula models, which are copula mod-
els allowing for stochastic time-varying dependence driven by time dependent
latent variables. The latent variables follow a stationary AR(1) model and the
inverse Fisher transform relates the latent variable at time t to the Kendall’s
τ at time t. Any bivariate copulas can be taken. For the simulation and
application we chose the Gaussian, Clayton and Gumbel copula.

We took a Bayesian approach using MCMC sampling for estimation and
inference, since maximum likelihood is not tractable. The reason is that the
integration over T latent variables is computationally infeasible. In addition
the Bayesian approach allows easy construction of credible intervals , enabling
the assessment of the precision of point estimates Further using the MCMC
iterates we can easily construct point-wise credible intervals for interesting
time-varying quantities such as Kendall’s τt or the tail dependence coefficient
λt, as long there are simple relationships between the copula parameter θt ,
Kendall’s τt and the tail dependence coefficient λt. This was the case for the
copula families considered.

The need of having to update all latent variables requires special care
when a MCMC algorithm is designed. Here we developed two sampling
schemes. One is a näıive sampling scheme for the latent variables which
uses individual Metropolis-Hasting steps. This sampler however exhibit large
autocorrelations. We improved this sampling scheme by developing a coarse
grid sampler. Here we found a random transformation which satisfied the
conditions of Liu and Sabatti (2000) and is easy to sample. According to Liu
and Sabatti (2000) the application of this random transformation does not
change the needed full conditional. In a simulation study we showed that
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this procedure improves the mixing of the MCMC chain as measured by the
effective sample size.

In two applications to financial stock indices we demonstrated the need
to incorporate time varying dependence. We applied the coarse grid sampler
for SCAR models with Gaussian, Clayton and Gumbel copulas. To assess
the fit of these different SCAR models we compared the posterior mean of
Kendall’s τt to empirical estimates of τt. The empirical estimates of τt were
computed using a simple rolling window with fixed window size. Here we
like to note that the SCAR model formulation allows for easy comparison
of different copula families, since the time dependence is modelled in terms
of Kendall’s τt and not with respect to the parameter θt which specifies the
copula. Finally we investigated the capabilities of the chosen SCAR model
with respect to predicting future Kendall’s τt.

There are several interesting open problems to investigate. First one can
develop a joint Bayesian analysis of marginal models such as GARCH or
stochastic volatility (SV) models as suggested in Ausin and Lopes (2009)
using a nonstochastic dependence dynamics. At the moment the samplers
have been formulated for bivariate time series, however we can extend this
by using multivariate copulas. A very flexible class of such models has been
suggested and applied to financial time series data by Aas, Czado, Frigessi,
and Bakken (2009). It uses the pair-copula construction (PCC) method
and a recent survey of these PCC models are given in Czado (2010). The
advantage of such an approach is that the model is formulated with respect
to conditional parameters, which in contrast to correlation parameters can
be chosen independently. Time varying dependence can be incorporated in a
similar fashion as for the SCAR copula models. Efficient Bayesian inference
for such models are currently being studied. Finally more suitable model
comparison criteria for non nested SCAR models are needed. One possible
approach here would be to investigate Bayesian adaptations to non nested
model comparison tests such as suggested by Vuong (1989) and Clarke (2007).
A first such adaptation was provided in Czado, Schabenberger, and Erhardt
(2009).
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Appendix A. Algorithms

Algorithm 1 Updating latent variables (näıve method)

Input: γ
(r−1)
t , 1 ≤ t ≤ T

Output: γ
(r)
t , 1 ≤ t ≤ T

1: for t← 1, T do
2: Simulate γ̃t from N(γ∗t , σ

∗
t
2) . See Eq. (12)

3: Compute k = min

{
p(ut | γ̃t)

p(ut | γ(r−1)
t )

, 1

}

4: MH-Step:
5: if unif(0,1) ≤ k, γ

(r)
t ← γ̃t

6: else γ
(r)
t ← γ

(r−1)
t

7: end for

Algorithm 2 Updating latent variables (coarse grid method)

Input: γ
(r−1)
t , 1 ≤ t ≤ T

Output: γ
(r)
t , 1 ≤ t ≤ T

1: for t← 1, T do
2: Simulate λ̃t from N(λ∗t , Vt)

∗ . See Eq. (20)

3: Set γ̃1:T = γ
(r−1)
1:T + λ̃t bt

4: Compute k = min

{
p(u1:T | γ̃1:T )

p(u1:T | γ(r−1)
1:T )

, 1

}

5: MH-Step:
6: if unif(0,1) ≤ k, γ

(r)
1:T ← γ̃1:T

7: else γ
(r)

1T ← γ
(r−1)
1:T

8: end for
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Algorithm 3 Updating parameters

Input: µ(r−1), φ(r−1), σ(r−1)

Output: µ(r), φ(r), σ(r)

1: Update of µ:

2: σ2(r)
from IG(T−1

2
+ a,B + b) . see Eq. (23)

3: Update of µ:
4: µ(r) from N(µ̃∗, σ̃∗ 2

µ ) . see Eq. (25)
5: Update of φ

6: Simulate φ̃ from N

(
S1

S0

,
1

S0

)
· 1[−1,1](φ̃) . See Eq. (26)

7: Compute k = min





ϕµ, 1
1−φ̃2

(γ
(r)
1 )

ϕµ, 1

1−φ(r−1)2
(γ

(r)
1 )

, 1





8: if unif(0,1) ≤ k, φ(r) ← φ̃
9: else φ(r) ← φ(r−1)

Appendix B. Conditional expectations and variances for the coarse
grid method

The values of λ∗t and V ∗
t for the definition of bt as in equation (14).

For t = 1, 2: λ∗t = −(γt − µ) + φ2(γt+2 − µ)
V ∗

t = σ2(1 + φ2

For t = 3, . . . , T − 2: λ∗t = −(γt − µ) +
φ2(γt−2 + γt+2 − 2µ)

1 + φ4

V ∗
t =

σ2(1 + φ2)

1 + φ4

For t = T − 1, T : λ∗t = −(γt − µ) + φ2(γt−2 − µ)
V ∗

t = σ2(1 + φ2)
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CG sampler

True 2.5% 50% 97.5% mean mode EFS EFScg

EFSN

µ 1.0 0.9339 1.0050 1.0736 1.0049 1.0053 31954.33 3.2498
φ 0.9 0.8031 0.8932 0.9491 0.8890 0.8994 1214.65 1.3400
σ 0.1 0.0754 0.1064 0.1466 0.1077 0.1044 750.73 1.5327
µ 1.0 0.9657 1.0013 1.0367 1.0013 1.0011 4582.14 1.3387
φ 0.1 -0.3004 0.0855 0.4588 0.0847 0.0854 1243.84 1.1697
σ 0.2 0.1413 0.1947 0.2444 0.1942 0.1954 1032.76 1.3754
µ 0.0 -0.1345 0.0052 0.1431 0.0054 0.0051 62257.45 2.5245
φ 0.9 0.8356 0.8958 0.9391 0.8937 0.8989 2253.49 1.3988
σ 0.2 0.1563 0.2018 0.2575 0.2032 0.1998 1277.12 1.5802

N sampler

µ 1.0 0.9335 1.0051 1.0742 1.0049 1.0053 9832.80 -
φ 0.9 0.8032 0.8934 0.9493 0.8891 0.8995 880.20 -
σ 0.1 0.0752 0.1064 0.1468 0.1076 0.1045 489.86 -
µ 1.0 0.9659 1.0012 1.0364 1.0012 1.0012 3422.91 -
φ 0.1 -0.3000 0.0882 0.4591 0.0871 0.0891 1063.36 -
σ 0.2 0.1413 0.1946 0.2439 0.1942 0.1951 750.85 -
µ 0.0 -0.1344 0.0056 0.1430 0.0055 0.0056 24661.06 -
φ 0.9 0.8354 0.8957 0.9393 0.8937 0.8990 1611.06 -
σ 0.2 0.1558 0.2019 0.2571 0.2031 0.2002 808.18 -

Table 1: Posterior estimates averaged over 100 simulated data sets assuming a Gaussian
SCAR(µ, φ, σ) copula model for different parameter settings using the coarse grid (CG)
and the näıve (N) sampler, respectively. (Posterior estimates are based on 100 000 MCMC
iterations with burnin 5 000 and thining of 50. The effective sample size (EFS) based on
10 0000 MCMC iterations for both samplers and its ratio EFScg/ EFSN are given in the
last three columns).
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Figure 1: Assumed time dependence between u1, . . . , uT induced through latent variables
θ1, . . . , θT (arrows indicate dependence).

CG sampler

True 2.5% 50% 97.5% mean mode EFS EFScg

EFSN

µ 1.0 0.9260 0.9973 1.0657 0.9971 0.9978 31325.61 3.1999
φ 0.9 0.7842 0.8807 0.9392 0.8758 0.8877 1113.03 1.3650
σ 0.1 0.0748 0.1082 0.1509 0.1095 0.1062 692.68 1.5571
µ 1.0 0.9599 0.9946 1.0300 0.9947 0.9946 4192.09 1.3324
φ 0.1 -0.3423 0.0799 0.4932 0.0803 0.0788 1065.33 1.1605
σ 0.2 0.1190 0.1800 0.2342 0.1791 0.1811 772.58 1.3443
µ 0.0 -0.1320 0.0065 0.1441 0.0066 0.0066 65627.31 2.3678
φ 0.9 0.8401 0.8965 0.9384 0.8947 0.8992 2617.63 1.4397
σ 0.2 0.1591 0.2022 0.2536 0.2033 0.2005 1454.21 1.5944

N sampler

µ 1.0 0.9261 0.9973 1.0664 0.9972 0.9976 9789.47 -
φ 0.9 0.7847 0.8802 0.9395 0.8757 0.8869 815.42 -
σ 0.1 0.0748 0.1082 0.1509 0.1095 0.1065 444.87 -
µ 1.0 0.9597 0.9949 1.0301 0.9949 0.9949 3146.34 -
φ 0.1 -0.3315 0.0828 0.4977 0.0835 0.0864 918.03 -
σ 0.2 0.1201 0.1807 0.2342 0.1800 0.1819 574.71 -
µ 0.0 -0.1328 0.0065 0.1435 0.0065 0.0069 27716.70 -
φ 0.9 0.8403 0.8967 0.9385 0.8949 0.8994 1818.20 -
σ 0.2 0.1592 0.2021 0.2537 0.2033 0.2001 912.08 -

Table 2: Posterior estimates averaged over 100 simulated data sets assuming a double
Clayton SCAR(µ, φ, σ) copula model for different parameter settings using the coarse
grid (CG) and the näıve (N) sampler, respectively. (Posterior estimates are based on
100 000 MCMC iterations with burnin 5 000 and thining of 50. The effective sample size
(EFS) based on 10 0000 MCMC iterations for both samplers and its ratio EFScg/ EFSN

are given in the last three columns).
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CG sampler

True 2.5% 50% 97.5% mean mode EFS EFScg

EFSN

µ 1.0 0.9679 1.0003 1.0316 1.0001 1.0005 751.86 1.0332
φ -0.9 -0.9456 -0.8858 -0.7834 -0.8802 -0.8936 876.04 1.3759
σ 0.1 0.0679 0.1035 0.1503 0.1050 0.1014 546.05 1.5729
µ 1.0 0.9646 1.0030 1.0397 1.0029 1.0030 2822.08 1.1898
φ -0.1 -0.5101 -0.0239 0.4618 -0.0234 -0.0247 853.38 1.2160
σ 0.2 0.1016 0.1873 0.2512 0.1848 0.1902 490.05 1.3164
µ 0.0 -0.0436 -0.0004 0.0427 -0.0004 -0.0004 1448.89 1.0214
φ -0.9 -0.9374 -0.8879 -0.8235 -0.8859 -0.8918 2059.20 1.3390
σ 0.2 0.1585 0.2158 0.2798 0.2166 0.2122 1188.54 1.4925

N sampler

µ 1.0 0.9674 0.9997 1.0311 0.9997 0.9999 727.67 -
φ -0.9 -0.9469 -0.8881 -0.7865 -0.8825 -0.8959 636.71 -
σ 0.1 0.0667 0.1018 0.1486 0.1033 0.0992 347.16 -
µ 1.0 0.9634 1.0000 1.0397 1.0005 0.9996 2371.97 -
φ -0.1 -0.5207 -0.0246 0.4618 -0.0255 -0.0215 701.78 -
σ 0.2 0.0997 0.1794 0.2506 0.1784 0.1811 372.27 -
µ 0.0 -0.0434 -0.0005 0.0420 -0.0005 -0.0005 1418.54 -
φ -0.9 -0.9386 -0.8957 -0.8373 -0.8937 -0.8991 1537.90 -
σ 0.2 0.1565 0.2028 0.2585 0.2041 0.2009 796.32 -

Table 3: Posterior estimates averaged over 100 simulated data sets assuming a double
Gumbel SCAR(µ, φ, σ) copula model for different parameter settings using the coarse
grid (CG) and the näıve (N) sampler, respectively. (Posterior estimates are based on
100 000 MCMC iterations with burnin 5 000 and thining of 50. The effective sample size
(EFS) based on 10 0000 MCMC iterations for both samplers and its ratio EFScg/ EFSN

are given in the last three columns).
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Dow Jones NASDAQ S&P500 DAX
Initial Date 1990/03/23 1990/03/23 2002/06/06 2002/06/06
Final Date 2000/03/26 2000/03/26 2009/11/06 2009/11/06

ω 5.456e-07 2.460e-06 1.051e-06 1.875e-06
(1.422e-07) (4.038e-07) (2.850e-07) (5.562e-07)

α 4.674e-02 1.005e-01 7.026e-02 8.356e-02
(4.029e-03) (7.748e-03) (1.016e-02) (1.190e-02)

β 9.482e-01 8.829e-01 9.212e-01 9.094e-01
(4.995e-03) (9.418e-03) (1.071e-02) (1.179e-02)

Table 4: Parameter estimates of marginal GARCH(1,1) models with Gaussian innovations
together with estimated standard deviation in parentheses using maximum likelihood for
each margin.

Dow Jones vs. NASDAQ S&P500 vs. DAX

2.5% 50% 97.5% mean mode 2.5% 50% 97.5% mean mode
Gaussian-SCAR

µ 0.5361 0.5849 0.6358 0.5854 0.5848 0.3830 0.4238 0.4615 0.4239 0.4227
φ 0.9148 0.9584 0.9851 0.9556 0.9620 0.4592 0.6849 0.8435 0.6724 0.6969
σ 0.0277 0.0469 0.0709 0.0479 0.0459 0.1054 0.1675 0.2289 0.1666 0.1708

Clayton-SCAR
µ 0.4490 0.4863 0.5193 0.4854 0.4870 0.3220 0.3544 0.3873 0.3547 0.3541
φ 0.5395 0.7646 0.8730 0.7432 0.7894 0.1580 0.4921 0.7323 0.4745 0.5211
σ 0.1005 0.1459 0.2165 0.1505 0.1406 0.1094 0.1663 0.2229 0.1666 0.1672

Gumbel-SCAR
µ 0.4953 0.5362 0.5742 0.5359 0.5355 0.3301 0.3725 0.4127 0.3725 0.3719
φ 0.7473 0.9036 0.9584 0.8861 0.9192 0.6269 0.8001 0.9016 0.7885 0.8167
σ 0.0477 0.0805 0.1393 0.0849 0.0747 0.0797 0.1264 0.1806 0.1272 0.1251

Table 5: Estimated posterior quantiles, mean and mode for the time varying copula param-
eters using a Gaussian, Clayton and Gumbel SCAR copula model based on 1 900 recorded
MCMC iterations for the two data sets

Dow Jones vs. NASDAQ S&P500 vs. DAX

RW50 RW125 RW250 RW50 RW125 RW250
Gaussian-SCAR 14.22 12.40 12.51 17.45 16.01 14.44
Clayton-SCAR 25.94 20.56 16.58 16.20 10.95 8.05
Gumbel-SCAR 15.36 12.72 12.28 14.04 12.83 10.93

Table 6: Sum of square of distances between SCAR based Kendall’s τt estimates and
empirical ones based on rolling windows of size 50, 125 and 250 for the two data sets.
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Figure 2: MCMC traces, estimated autocorrelations and posterior densities of α =
(µ, φ, σ)> for a bivariate data set with T = 1000 from a Gaussian SCAR(1, .9, .2) copula
model using the CG sampler (rows correspond to µ, φ and σ, respectively and — MAP
estimates, - - - true values)
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Figure 3: Estimated posterior Kendall’s τt for the last 200 observations from a Gaussian
SCAR(1, .9, .2) copula model of size T = 1000 using the CG sampler

32



−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Figure 4: First row: contours for a double Clayton (DC(θ)) copula wi standard normal
margins with θ = 1 (left panel) and for θ = −1 (right panel), respectively. Second row:
contours for a double Gumbel (DG(θ)) copula with standard normal margins with θ = 2
(left panel) and for θ = −2 (right panel), respectively.
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Figure 5: Top row: Standardised innovations for the log returns for the DJI and the
NASDAQ data from March 23th, 1990 to March 26th, 2000 after GARCH(1,1) filtering
(left panel) and for the S&P500 and DAX data from June 6th, 2002 to November 11th,
2009 (right panel). Bottom row: Rolling windows estimates for time varying Kendall’s τt

by using a window size of 250, 125 and 50 values,respectively, for both data sets.
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Figure 6: Top row: Rolling window based with window size 50 and estimated posterior
Kendall’s τt based on Gaussian, Clayton and Gumbel SCAR models for the DJI-NASDAQ
data in 1997 (left panel) and for the S&P500-DAX data for 2007 (right panel) Bottom
row: Point-wise 90% credible intervals for Kendall’s τt for the chosen model (Gaussian
SCAR (Gumbel SCAR) for DJI-NASDAQ (S&P500-DAX) data, respectively).
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Figure 7: Pointwise 90% predictive intervals for Kendall’s τt in 1999 based on Gaussian
SCAR model for the DJI-NASDAQ data (left panel) and in 2008 based on Gumbel SCAR
for the S&P500-DAX data (right panel).
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