A discrete-time design method for a robust current controller of a servo drive has been developed. It takes the sampling time, the processing dead time and the dynamic behavior of the A/D converter into account. The theoretical calculations are verified using a test stand for high dynamics. The test stand includes a voice coil motor and power electronics with Gallium Nitride (GaN) power semiconductors for switching frequencies of more than 100 kHz. The bandwidth of the current control loop can be improved from typically 1 kHz to 1.5 kHz with insulated-gate bipolar transistor (IGBT) power semiconductors in state-of-the-art motion control systems to 10 kHz and more.
«
A discrete-time design method for a robust current controller of a servo drive has been developed. It takes the sampling time, the processing dead time and the dynamic behavior of the A/D converter into account. The theoretical calculations are verified using a test stand for high dynamics. The test stand includes a voice coil motor and power electronics with Gallium Nitride (GaN) power semiconductors for switching frequencies of more than 100 kHz. The bandwidth of the current control loop can b...
»