Analysis of entire transparent rodent bodies could provide holistic information on biological systems in health and disease. However, it has been challenging to reliably image and quantify signal from endogenously expressed fluorescent proteins in large cleared mouse bodies due to the low signal contrast. Here, we devised a pressure driven, nanobody based whole-body immunolabeling technology to enhance the signal of fluorescent proteins by up to two orders of magnitude. This allowed us to image subcellular details in transparent mouse bodies through bones and highly autofluorescent tissues, and perform quantifications. We visualized for the first-time whole-body neuronal connectivity of an entire adult mouse and discovered that brain trauma induces degeneration of peripheral axons. We also imaged meningeal lymphatic vessels and immune cells through the intact skull and vertebra in naïve animals and trauma models. Thus, our new approach can provide an unbiased holistic view of biological events affecting the nervous system and the rest of the body.Note: Manuscript videos are available at \textquoteleftSupplementary material\textquoteright section of BioRxiv and at the following link http://vdisco.isd-muc.de/
«
Analysis of entire transparent rodent bodies could provide holistic information on biological systems in health and disease. However, it has been challenging to reliably image and quantify signal from endogenously expressed fluorescent proteins in large cleared mouse bodies due to the low signal contrast. Here, we devised a pressure driven, nanobody based whole-body immunolabeling technology to enhance the signal of fluorescent proteins by up to two orders of magnitude. This allowed us to image...
»