User: Guest  Login
Title:

Semantic imaging features predict disease progression and survival in glioblastoma multiforme patients.

Document type:
Journal Article
Author(s):
Peeken, Jan C; Hesse, Josefine; Haller, Bernhard; Kessel, Kerstin A; Nüsslin, Fridtjof; Combs, Stephanie E
Abstract:
BACKGROUND: For glioblastoma (GBM), multiple prognostic factors have been identified. Semantic imaging features were shown to be predictive for survival prediction. No similar data have been generated for the prediction of progression. The aim of this study was to assess the predictive value of the semantic visually accessable REMBRANDT [repository for molecular brain neoplasia data] images (VASARI) imaging feature set for progression and survival, and the creation of joint prognostic models in...     »
Journal title abbreviation:
Strahlenther Onkol
Year:
2018
Journal volume:
194
Journal issue:
6
Pages contribution:
580-590
Language:
eng
Fulltext / DOI:
doi:10.1007/s00066-018-1276-4
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/29442128
Print-ISSN:
0179-7158
TUM Institution:
Institut für Medizinische Statistik und Epidemiologie; Klinik und Poliklinik für RadioOnkologie und Strahlentherapie
 BibTeX